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Abstract

Hydrological Processes are complex and highly nonlinear because of their depen-

dency upon multiple climate and hydrological variables. Modeling the complexity

of these processes is quite challenging because of the many factors that may hinder

the efficiency of models in capturing the relationship between these variables and

response of the catchment. These factors may include; complex terrain, contrast-

ing regimes, limited meteorological network, noise present in the data and confined

economical resources. The Indus Basin is the main source of water for Pakistan.

Almost 80% of water requirement of this basin is derived by the Upper Indus

Basin (UIB). The UIB has many challenges: which include extreme complexity,

varying hydro-meteo-cryospheric regimes, limited meteorological network, climate

change pattern and the spread of UIB over political sensitive trans-boundary area.

The contrasting regimes in different part of basin is the result that the response

of the catchment is difficult to capture. Therefore, the trend discrepancies and

model uncertainties in the UIB exist, which is reflected in the previous literature

as well. The present research work is carried out by focusing; the larger part of

the UIB, incorporating multi type/ source data, and applying data preprocessing

techniques to minimize the uncertainties in the UIB streamflow measurement.

The aim of the research work is to develop Artificial Neural Network (ANN) based

hydrological models that can efficiently estimate the streamflow in the Pakistani

part of the UIB. A systematic approach is adopted to improve the different steps

involved in the hydrological modeling process, which involves data improvement,

data selection and data fusion. This ultimately leads to a development of model

data-fusion system for the region that optimizes the performance of ANN based

streamflow models. The research work is divided into three (03) parts with a

main focus on improving ANN based streamflow estimation models for the UIB

through; 1. Data preprocessing, 2. By incorporating satellite derived Snow Cover

Area (SCA), and 3. Utilizing data fusion. Two-step data preprocessing is per-

formed, which includes data transformation through Box-Cox transformation and

input selection through Gamma Test. Satellite derived SCA is utilized in combi-

nation with the on-ground flow observations to enhance the performance efficiency



x

of the streamflow estimation models in the region. The ANN models are also de-

veloped using a variety of data combinations which are made either on the basis

of type/nature of climate variable or through advanced input/feature selection

methods.

The results indicated; the models developed through data preprocessing performed

well as compared to the models developed with original data-set, with more than

90% correlation coefficient in both training and testing phases. The flow de-

pendency on satellite derived SCA of UIB region is clearly evidenced with the

improved average values of Nash Sutcliffe Efficiency (NSE) = 99.5/97.5 (train-

ing/testing), BIAS = -0.01/-6.6, Root Mean Squared Error (RMSE) = 251.4/532.3

and Variance (VAR) = 63218.0/286917.1 for the models developed using SCA in

combination with the other on-ground observations, as compared to the NSE =

99.1/97.1 (training/testing), BIAS = 14.6/-26.1, RMSE = 327.6/531.4 and VAR

= 106390.6/284363.4 for models developed using on-ground observations without

SCA. The improvement in ANN based models through feature selection techniques

including Genetic Algorithm (GA), Hill Climbing (HC) and Sequential Embed-

ding (SE) has been observed with better values of statistical indices (NSE and

R2 > 0.9), as compared to the models developed through manual selection of in-

put variables. However, the models developed utilizing multiple climate variables

like Precipitation, Discharge, Solar Radiation and SCA also performed well. Only

one feature selection technique, which is Full Embedding (FE) does not provide

good results with low values for R2, NSE and high corresponding values of other er-

rors. Overall, the models developed through SE outperformed with R2 =93.7/91.4

(training/ testing) and NSE= 97/96. The outcomes of this research could be used

to establish a comprehensive linkage between the changing climate variables and

their impact on the response of the UIB. The ANN based data fusion models could

be applied confidently for the streamflow estimation in the region and ultimately

for better management of flood mitigation and reservoir operation at downstream

of Tarbela. The research work recommends the use of multi type/ source data

coupled with data preprocessing to capture the non-linearity and complexity of

catchments which observe contrasting regimes.
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Chapter 1

Introduction

1.1 Background

Predicting stream-flows is extremely important to meet water management chal-

lenges such as, flood mitigation, drought management, reservoir operation and

planning of various water resource projects. Development of accurate stream-flow

prediction models is a difficult task as the behavior of natural streams is complex

and highly non-linear in both temporal and spatial aspects [1]. In recent past,

numerous methodologies have been adopted by researchers to predict stream-flow.

These can be divided in to two general types which are process based physical

methods and data-driven modeling approach [2].

Process based physical models are driven by some physical process or processes,

which is/are governed by the set of mathematical equations. These methods have

the advantage of understanding the hydrological process with the help of physical

features, however they are usually complex and often bear uncertainties due to

the limited availability of physical information of the watershed [3]. They also

bear the constraints of initial and boundary conditions while modeling the real

world problems. According to [4], the use of such models is highly restricted for

complex hydrological processes where the available data is not sufficient to explain

the process. They are not data-driven, still they require data (observations) to

evaluate model parameters.

1
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On the other hand, data driven models are derived by data and there are no

background equations involved for the description of data or any process. They

are purely based upon the characterization of input-output data and has a limited

knowledge of underlying physical mechanism [5]. The antecedent data condition is

utilized to estimate the model parameters by capturing the relationship between

input variable/s and targeted variable/s. Now a days, these methods are quite

popular in stream-flow estimation due to their ease of development, real time

implementation and minimum information requirement [6]. They are capable of

predicting the stream-flow with reasonable accuracy, despite of the fact, that these

methods have limited physical information of underlying hydrological process [7].

In past, traditional models including multiple regression and autoregressive moving

average type linear models have been used as data driven based forecasting models.

But, these models use the assumption of stationary data and provide good results

only, when the data is linear and normally distributed. On the other hand, hy-

drological processes are highly non-linear and the observations are non-stationary.

Similarly, the dependency of these processes on multiple climate factors make them

even more difficult to understand. Therefore, non-linear models are required to

capture the complex relationships of observations for better understanding of a

hydrological process.

The nonlinear models are those which are able to capture the nonlinearity present

among the data. In simple terms, the nonlinearity may be defined as the lack

of direct relationship between inputs and outputs. i.e. when these variables are

plotted graphically, the points do not fit in a straight line. The unequal change

of one variable to the other variable is normally defined by the heteroscedasiticity

of the data. This is a simple interpretation of nonlinearity in hydrology and

covers only one aspect of it. However, nonlinearity as a whole is a complicated

phenomenon because the hydrological data is complex and normally observes a

chaotic behavior.

Therefore, the nonlinear models are complex than the linear models due to the fact

that there are multiple parameters involved to capture the different trends present
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among the data, at the same time. The nonlinear models are usually described by

a function which is developed through a series of iterations.

Similarly, the use of multiple input variables observed through different sources

could be used to get a better picture of the hydrological phenomenon, especially in

catchments which are complex, observe contrasting regimes, and has dependency

upon multiple climate factors. The same is the case with UIB part on Pakistans

side, which being a main source of water for the country, has many challenges to

combat water shortage issues and maximize water control efficiency in the water

management sector of Pakistan.

1.2 Water Resources Management in Pakistan

Pakistan is an agricultural country and its economy is highly dependent upon

agricultural growth of the region. More than 70% of its population is attached

to this sector. The contribution of this sector in Gross Domestic Product (GDP)

of Pakistan is about 24% [8]. This is why agriculture is considered as one of the

main contributor towards economic growth of the region.

Agricultural growth is mainly dependent upon the availability of water. More than

90% of Pakistan’s available water is utilized for agriculture [9]. Therefore, the con-

tinuous availability of water for crops is crucial for the sustainability and stability

of this sector. On the other hand, Pakistan is facing water availability issues and

listed in one of the water scarce country with per capita water availability < 1000

m3/s.

The main source of water required for Pakistan is The Mighty River Indus and is

often called as the bread basket for Pakistan. It is one of the longest rivers of Asia

with more than 3000 km length. Indus Basin Irrigation System (IBIS) is one of

the world’s largest canal network system. This integrated system irrigates a total

area of 22 Million Hectares and contributes about 85% of all food production of

country. It supports irrigated agriculture and in a result provides food security to
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the people of Pakistan [10]. Not only this, Hydropower potential available in the

form of water storage reservoirs also ensures economical energy production.

The management of IBIS has been mainly achieved through construction of two

main storage dams Mangla and Tarbela along with a comprehensive inter-river

canal system. This wide spread system covers a huge geographical area and es-

tablished to distribute the water on equitable basis.

The irrigation intensity has increased enormously over time with increase in popu-

lation and industrial growth. Thus creating desire for high efficiency systems and

more need of water. But unfortunately the development in IBIS lags behind this

increased water demand and created even more call for changing water use habits

and moving towards sustainable approach [11].

Water resources play a fundamental role in the economic development of a country,

specifically a developing country like Pakistan. The region’s speedy population

growth is a serious alarm and resulting more demands of limited water resources

require proficient management of existing water resources rather than constructing

new amenities to meet the challenge.

In the water management communities, it is well known that to combat water

paucity issues, maximizing water management efficiency based on streamflow fore-

casting is crucial. Not only this, accurate streamflow forecasts has utmost impor-

tance while dealing with natural disasters, e.g. floods and droughts. For flood

warning, small temporal scale i.e. hourly or daily is preferable while a relatively

large scale forecasts are important for reservoir operation and irrigation schedul-

ing. Reservoir operation further decides the amount of water release which is

either surplus or required by downstream users.

In short, an efficient future planning and comprehensive management of water

resources that are linked with the streams, is impossible without a reliable and

accurate estimate of streamflow. The next section explains the existing irrigation

system of Pakistan, its history along with the current practices of water sharing

arrangements of Indus basin stream flow.
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1.3 Indus Basin Irrigation System

Indus Basin Irrigation System (IBIS) is one of the oldest irrigation systems of

the world and the farmers are using this largest integrated system since times

immemorial. However the technical adaption in irrigation methods has brought

a new revolution and the concept of irrigation has changed from open wells to

mechanically operated tube wells and flood canals to perennial canals. Although,

besides Indus Basin there exists two other basins namely Kharan Closed Basin

and Makran Coastal Basin in Pakistan but there resources and application is very

limited [12].

While discussing history of IBIS, there come two important milestones; Indus

Water treaty 1960 and Indus Water Accord 1991. After Indo-Pak partition, the

Indus water treaty was signed in 1960 between India and Pakistan under umbrella

of World Bank to resolve the water issues of both the countries. The outcome of

this treaty resulted in giving a full control of western rivers Indus, Jhelum and

Chenab to Pakistan while an exclusive authority of eastern rivers Ravi, Sutlej and

Beas to India. As a result of this treaty a system of link canals has been devised

and a total of 12 link canals were constructed to feed the canals which were earlier

on fed by the eastern rivers.

Before water apportionment accord 1991, the water was distributed between all

provinces of Pakistan on basis of pre-partition arrangements (1947-1970) and de-

cided by Federal Ministry of water and power Pakistan primarily based upon his-

toric uses, after 1970. The accord not only balanced river supplies including flood

supplies and future impounding but also came out with a plan to cope with the

future shortages, problems in water sharing between the provinces and challenges

in agricultural sector of Pakistan.

To execute this plan and implement the water accord, Indus River System Author-

ity (IRSA) has been formulated which represents all the four provinces. Before

start of the each crop season, IRSA prepares a water availability forecast and de-

termines the share of each province in accordance with the water apportionment
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accord. All provinces then prepare a thorough canal operation program depending

upon the share as determined by IRSA for their province.

Historic water rights of the main canals are protected and adhoc water sharing

arrangement was based on the 10-daily water allocations; Excess and shortages

to be shared proportionate to the design allocations; and Historic surface water

rights should not apply to groundwater. It also assured the escape of certain

amount of water to the sea to lay down the procedure for sharing shortages and

surpluses. The actual average system uses for the period 1977-82 could be used

as a guideline for future regulation pattern [13]. According to [14] the Indus

Basin Water Management Framework is based upon timely supplies, equitable

distribution and water allocations for cultural land and non-perennial canals.

Being the crucial source of water for Pakistan, the Indus basin system is often

called as the bread basket for Pakistan. To efficiently manage this precious source

of water, accurate stream flow management in Indus basin is crucial. The man-

agement efficiency could be enhanced by capturing the challenges that exist in the

complex terrain of Indus basin. These include the contrasting regimes, limited me-

teorological network and the dependency of the catchments response on multiple

climate factors. The research motives to deal with these challenges are explained

in the next section.

1.4 Research Motives, Problem Statement and

Research Questions

1.4.1 Research Motives

The mountainous catchments, which are snow-fed are highly sensitive to the

changes in temperature and precipitation. The response of such catchments is

mostly derived by snowmelt, which is a function of respective SCA. Therefore,

modeling the response of mountainous catchments often require a comprehensive

data-set including information about temperature, precipitation and snow cover,
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etc. Due to confined economical resources, Pakistan has a very limited network

for on-field measurement of snow fall and snow cover. Not only this, the existing

methods are old and may have flaws in the measurement process [15]. The extreme

hydro-meteorological conditions in a complex terrain of UIB, make it even more

difficult to get on-field measurements of many climate variables.

Previously, the researchers have utilized the concept of fusing/integrating on-

ground (time series data) and satellite derived observations (spatial maps) to create

better hydrological models but these studies are limited as compared to the overall

importance of the subject; [16], [17], [18]. It is notable, that the existing data-

fusion practices are more valid in the field of remote sensing and geophysics and

somehow less valid in the field of hydrological modeling [19]. Similarly, the limits

of fusion are presently not characterized and there are no specific guidelines that

what amount of data should be entered into a fusion process and whether or not

the use of multi-source data would be advantageous [20]. Therefore, it is essential

to experiment the data-fusion approaches in the field of hydrological forecasting

to establish the evidence of its importance.

Although, multiple data of different types and sources provide a better picture

of catchment and its response. However, it is necessary to select or fuse only

that particular information among the set of data, which is more correlated to

our desired output. The data scrutiny is crucial in getting the optimal results

from data fusion, which is often neglected by the modelers. In this case, advanced

feature selection methods provide an opportunity for features/data selection in

data driven models. Again these methods are not very common in the field of

hydrological modeling.

Typically, feature selection methods work on a principle of selecting inputs among

the larger set of inputs, which are creating noise while predicting the given output.

The process of input variable selection could be facilitated if the noise present in

the data is already known. The measure of noise present among the data, prior

to model development, not only reduces computational effort but also eliminates

uncertainty in the developed models. This also helps in creating models that are
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more generalized to the unseen data with reduced over-fitting problems, which are

common in data-driven hydrological models.

The present research work is carried out reduce the uncertainty in data-driven

models by strengthening the weak links present between the hydrological data

and their respective models. These include the use of inappropriate data, relying

on single type/ source of data and no information of input’s noise/variation prior to

modeling. The above discussion clearly indicates that there is a need of time to; 1.

Improve data-driven modeling through creating a better data-set, 2. Incorporate

other sources of data to get a better picture of the hydrological process and 3.

Experiment data fusion options to improve the efficiency of hydrological models.

1.4.2 Problem Statement

The extreme complexity of the UIB terrain with a poorly gauged network makes

it very difficult to accurately model the response of the catchment. On the other

hand, contrasting regimes of the UIB requires multiple climate variables of different

types and/or sources to cover the extent of the catchment. The data obtained

from changing regimes of the UIB has trend discrepancies, noise and nonlinearity.

The use of raw data may create uncertainty in hydrological models, especially in

data-driven models, which fully rely upon the inputoutput data. Although, data

preprocessing provides an opportunity for data improvement but Investigation of a

physical process through mathematical applications could be affected by boundary

conditions and may create errors and uncertainties. Most of the previous studies on

the UIB were carried out with the lumped hydrology of a portion of this large river

basin and the models were developed for relatively high estimation interval. The

shorter intervals for streamflow estimation like weekly or daily are more preferable

for flood estimation and management in the region. The previous studies on UIB

entirely missed the concept of data-fusion. The models covering a larger part of the

UIB catchment and containing multiple data-sets from different sources and types

is crucial to develop data fusion system for the UIB. This is essential to understand

the impact of different climate variables, individually and in-combination on the

model efficiency.
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1.4.3 Research Questions

1. What is the impact of data preprocessing on the improvement of ANN based

hydrological forecasting?

2. What is the effect of multi-source information on the improvement of stream-

flow forecasting models for complex catchment of UIB?

3. What are the best data fusion options to model the UIB streamflow through

ANN?

1.5 Novelty of the Research Work

The research aims at the improvement of hydrological forecasting through focusing

all aspects simultaneously including data transformation, data length selection,

input selection, data fusion of different types of climate variables, rather focusing

on one or two dimensions as most of the previous researchers did. Not only this,

the methodology provided to achieve this goal is simple, innovative and different

as compared to the past studies carried out on the same topic. It is evident that

every catchment behaves differently, even the same catchment may have different

behavioral phases. This comprehensive study is unique in a sense that it focuses

on the development of data fusion models for the UIB, which was not explored

for this type of research before. The main points describing the novelty of the

research work are described in the following points:

1. The present work utilized larger part of the UIB for hydrological modeling

with multiple input variables as compared to the previous researchers.

2. For the first time, the impact of number of climate variables on the response

of the UIB is checked individually and in-combination.

3. A comparative assessment has been made on the performance of discharge

estimation by changing the type/ source of input data.
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4. The study is first of its kind to apply the Box-Cox transformation on hydro-

logical data to improve performance of ANN based hydrological models by

data preprocessing.

5. Conjunctive use of Box-Cox with Gamma test and ANN is also unique in hy-

drological modeling. The development of data fusion system for UIB stream-

flow through advanced feature selection techniques is distinctive.

6. It is also expected that the developed models will correct and supersede

all the previous data-driven models established for Upper Indus Basin and

provide an accurate model-data combination that can be further used with

confidence.

1.6 Research Significance and Practical

Applications

The study is significant in a sense that it provides a simple and understandable

approach to improve data, add data, fuse data and ultimately provide a better

data-set, which provides a better picture of hydrological process within a catch-

ment. To get a better representation of the catchment’s response, it is necessary

to understand the different behavioral phases and regimes of the catchment. The

UIB observes snow-melt as a dominant regime among the other regimes, which

are glacial-melt and rainfall-fed. Therefore, it is necessary to impart the snow

cover change along with the other climate variables to verify its impact on the

catchment’s response individually as well as in combination. The present study

provides an opportunity for the researchers to get a clear picture of the catch-

ment’s behavior through changing the type/ source of multiple climate variables.

These multiple climate variables are fused together to get a more informed data

state for the hydrological modeling of the UIB.

A better data-set could be defined as a set of data that consists of a particular set of

input variables among the many candidate input variables and that specific shape

of data among the many other possible shapes, which can model the target output
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in a best possible way. This is achieved through applying data preprocessing

techniques which involve data transformation by a family of power transformation

and combination selection through Gamma test. The change in power factor

changes the shape of data in Box-cox transformation. The selection of this power

factor is simply made through the histogram characteristics and probability plots.

Whereas, the selection of input combination is achieved through estimating the

variance of noise present in the data-set with the help of a gamma test. Not only

this, it provides more clarity in understanding the role of each type of data in the

model improvement, particularly ANN based hydrological forecasting models.

The study particularly focus on the improvement of streamflow estimation models

in the Upper Indus Basin. However, it provides an initial set goal to the researchers

to eliminate uncertainty in their hydrological models through data improvement

and data fusion before the model development process. The developed models

could be used confidently to predict the weekly stream flows at Tarbela. The pre-

dicted streamflows could be used for better reservoir operation, flood management

and irrigation scheduling at downstream of Tarblea. It is also expected that the

developed models will enhance the water management efficiency as the uncertainty

in the models has been reduced by incorporating multi type/source data, data pre-

processing, data fusion and calibration of models through advanced ANN based

technique.

1.7 Research Objectives

The main objectives of this research work are;

1. Creating a better data-set to train ANN based streamflow forecasting models

through Data Preprocessing. The preprocessing of data involves a two-step

procedure; data improvement through a mathematical transformation and

screening of inputs through Genetic Algorithm and Gamma Test. The ob-

jective is to use this improved data-set to develop ANN based streamflow

models, which could be used with less uncertainty and more confidence.
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2. Creating a better data-set by incorporating the satellite derived Snow Cover

Area (SCA) with on-ground discharge observations, to effectively model the

response of the mountainous catchment. The objective is to provide an

evidence that use of multi-source data provide a better picture of the catch-

ment;s response. Specifically, satellite derived SCA could be used success-

fully as a possible predictor to capture the response of mountainous catch-

ments like UIB. Consequently, to develop ANN based streamflow models

through this integrated data-set, which perform better as compared to tra-

ditional rainfall-runoff, or snowmelt-runoff models.

3. Combining different types of climate variables and checking the impact of

each type of variable, on the performance of ANN based streamflow forecast-

ing models, individually and in combination. The objective is to improve

ANN based streamflow estimation models by adopting data fusion options

on multi-type, nature and source of data.

1.8 Scope and Limitations of Research

1.8.1 Scope

The present research focused on developing stream flow estimation models for UIB

at Tarbela. Four types of input variables have been considered as inputs to model

the response at Tarbela, which include discharge at upland stations, information

of precipitation, antecedent data condition of global solar radiation and snow cover

area. The data length used to achieve the first objective is ten (11) years (1995-

2005). Whereas, for the 2nd and 3rd objective the data length of 8 years have been

utilized (2003-2010). The SCA is derived from MODIS satellite imageries for three

sub-basins of UIB including Astore, Bunji and Gilgit. The ANN based stream flow

estimation models are trained via BFGS algorithm with two fixed hidden layers

and varying nodes. The ANN model training and data fusion process is performed

in WinGamma environment. Only four (04) types of feature selection techniques

have been adopted including full embedding, sequential embedding, hill climbing
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and genetic algorithm. The limitation to carry out this research work are defined,

which are provided in the following section.

1.8.2 Limitations

Modeling the real world problems always bear some limitations and constraints.

Similarly the present research work also contains some limitations, which are listed

below:

1. There are issues with the recent data availability and consistency due to con-

fined economical resources and limited meteorological network of the UIB.

Therefore, the data-set is carefully selected for the duration for which the

data is found consistent for all the gauging stations. Furthermore, the data

type (direct / global) entirely depends upon the availability constraints of the

relevant department, e.g. the data used for solar radiation is only available

as global measurements.

2. There are data transformation options other than power transformation,

which could be applied and evaluated in comparison with this transforma-

tion. However, this study is limited to only application of the Box-Cox

transformation due to the fact that it is not a single transformation, rather

a family of power transformation. It is used because of its unique char-

acteristics of simultaneously reducing the non-normality, non-linearity and

heteroscadisticity in the data. This limitation is applied on a condition of

satisfactorily results.

3. The study utilizes the satellite derived snow cover area as one of the input

variable for only three sub-basins of the UIB. The selection of these sub

basins depend upon the previous researches that demonstrated their role in

contributing the flow derived by snowmelt.

4. The main focus of the present study is to improve the ANN based model

performance through playing with the “data” only. Therefore, all the de-

veloped ANN models consider two fixed hidden layers (with varying nodes).
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Also, the ANN models are trained only via BFSG algorithm, which is also

fixed for the training of all models of the present study.

1.9 Brief Methodology

For the current research work, initial selection of climate variables has been per-

formed on the basis of data availability by the relevant department, data con-

sistency for the specific duration, sensitivity analysis performed by the previous

researchers and already used variables to model the response of UIB. The flow

dependency of UIB on snow-melt is captured by the temporal change in snow

cover area of three main sub-catchments of the entire UIB along with the global

solar radiation that plays an important role in defining the snow cover dynam-

ics. Due to the scarce conditions of snow data in the complex terrain of UIB, the

satellite derived snow cover area is utilized. In addition to this the other two key

variables including rainfall and runoff are utilized, which are traditionally used in

most of the catchment’s flow estimation models. The antecedent data condition of

these variables is collected for a number of stations located within the UIB, which

constitute a comprehensive set of 25 inputs.

To improve the ANN modeling through data preprocessing which targets the 1st

objective of the research work, a two-step procedure containing data transforma-

tion through BoxCox transformation and data screening through Gamma test has

been adopted. To achieve the 2nd objective, satellite derived SCA has been uti-

lized in combination of the on ground discharges of three sub-basins of UIB to

develop ANN based stream flow estimation models at Besham Qila. To achieve

the 3rd objective of this research work, the impact of multiple type/ source of

input variables, which are described in the above paragraph, has been checked on

the response of UIB at Tarbela. For this purpose, the two considerations of data

fusion have been adopted, which include the data fusion on the basis of type/

source of data and data fusion through advanced feature selection methods. The

feature selection methods utilized in this study are; Full Embedding, Sequential

Embedding, Hill Climbing and Genetic Algorithm.
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1.10 Thesis Organization

This chapter starts with the information about the water resources management

practices in Pakistan, followed by the Indus Basin Irrigation System and the im-

pact of climate change in the UIB. After that, the research background and motives

are discussed in detail. At the end, research objectives are outlined.

The 2nd Chapter is dedicated for the literature review carried out for this research

work. The literature review includes the data preprocessing options and practices

for ANN, role of snow cover in mountainous catchment and previous studies which

have established the UIB flow dependency over snow-melt. The literature review

further includes the importance of SCA in many climate studies, the importance

of hydrological data in data-driven models, the importance and the practice of

data fusion options by the researchers in hydrological forecasting. The chapter

is concluded by the problem statement with particular motives to carry out the

research work.

The 3rd chapter presents the methodology adopted to carry out the research work.

The whole methodology is divided in three (03) main sections. The first section is

dedicated for the methods to achieve the 1st objective of the research work, which

includes development of improved ANN models through data-preprocessing. This

section starts with the study area & datasets followed by the Box-Cox transforma-

tion. Further, the input selection procedure through Gamma test is described in

detail, which is also adopted in two other main sections targeting other objectives

of the research work. The model development procedure adopted for ANN based

streamflow estimation models is described in detail. The section also contains the

detail of performance indicators which have been used to evaluate the performance

of models throughout this research work. The second main section of the methodol-

ogy covers the 2nd part of the research work that includes the development of ANN

based streamflow models by incorporating the satellite derived Snow Cover Area

(SCA) as one of the input variable along with the on-ground flow observations.

The methodology includes the study area and data-set, MODIS snow product for

SCA, input combination & data length selection and ANN model development.
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The third main section of this chapter is dedicated for the 3rd part of the research

work that uses the multi-type/nature of climate variables in different combinations

to check the impact of each input combination for the UIB streamflow estimation

models. The impact of data fusion is checked in the performance evaluation of

ANN based streamflow estimation models. The methodology includes the study

area & dataset, data fusion options and ANN model development.

The 4th Chapter presents all the results obtained for a variety of ANN models

developed on different datasets/ conditions, as described in the chapter 3. The

chapter covers the results obtained through the Box-Cox transformation, Gamma

Test, M-Test and ANN Modeling. The chapter also includes a comprehensive

discussion on all types of results obtained through different tests and models. The

chapter also contains summaries of results at the end of each main section.

The 5th chapter is dedicated for overall conclusions of the research work. The

chapter is concluded by the future possibilities and recommendations.
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Literature Review

2.1 Background

The importance of accurate stream flow estimation to increase the water manage-

ment efficiency along with the significance of the UIB for the water management

sector of Pakistan has been explained in Chapter 1. The challenges for the UIB

has been identified, which include; climate change and nonlinearity, catchments

complexity, varying regimes, limited network and the dependency of response on

multiple climate variables. This chapter provides a detailed literature review con-

firming the above mentioned challenges along with the previous efforts, to model

the response of the UIB, as well as the catchments with similar complexities and

problems.

The chapter provides a detailed literature review about the options available to

capture hydrological process in general and ANN based hydrological models in

particular. The motives of the research work utilizing multi type/ source data to

get a better input data set are explained with the help of literature review as the

UIB flow dependency on multiple climate variables and data fusion. Similarly, the

novelty of the research work is highlighted with the help of previous literature by

identifying the research pockets in different aspects of the literature, as explained

in following headings, supporting the objectives of this research work. This is

17
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achieved by providing a short summary at the end of each section with overall

summary at the end of this chapter.

2.2 Indus Basin: Climate Change Pattern and

Trend Analysis

The Indus River originates from the Tibetan Plateau located in China, runs

through Kashmir and enters the Pakistan from Gilgit Baltistan. Passing through

the northern areas of Pakistan, it descends from the mountains after Tarbela

reservoir, runs through the entire country and discharged into the Arabian Sea.

In jurisdiction of Pakistan, the Indus Basin is divided into two main parts; the

Upper Indus Basin (UIB) and the Lower Indus Basin (LIB). The Indus Basin up

to Tarbela reservoir is termed as the UIB, after which the basin is termed as the

LIB.

The runoff originating from the HindukushKarakoramHimalaya (HKH) ranges, is

mainly generated through melting of snow and glaciers [21], [22] and contributes

up to 80% of mean annual flows of Upper Indus Basin (UIB) [23], [24]. The

mountainous region with high altitude and low temperature, receives most part of

its precipitation as snow. Therefore, the most part of the UIB remained covered

by snow in maximum time of the year and snow cover may reach up to 90% [25].

Due to the complexity of the catchment, the previous studies on the basin have

varying observations. Parsad [26] and Liu and Chan [27] reported that global

warming instigated glacial recession and created significant changes on hydrology

and water resources over HKH region. According to them, the glacier cover over

HKH ranges is considered as one of the fastest retreating cover in the world. Ac-

cording to Wang [28], glacier mass of the region is shrinking, resulting in increased

melt-water contribution to river flows downstream of the area, specifically during

summer season. The reduction in snow covered areas within the UIB has also

been confirmed by [29] who reported a decline of about 2.15% during period 1992
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to 2010. On the other hand, [30] claimed that snow cover in UIB has slightly in-

creased in south (Western Himalaya) and in North (Central Karakorum). Archer

and Fowler [31] have also reported the same trend of increased ice mass over UIB

for the last two decades.

The discrepancies in previous studies have created uncertainties in climate es-

timation models [24]. It has been confirmed by previous researchers that UIB

has contrasting hydrometeo-cryospheric regimes because of extreme complexity of

HKH terrain [32]. Being a complex terrain, it has a limited meteorological net-

work that is unable to cover the extent of this basin in both horizontal and vertical

directions [22].

2.2.1 Summary

The complex terrain of UIB is poorly gauged. The limited on-ground network is

unable to cover the extent of the watershed. The discrepancies in previous studies

exist due to the fact that UIB observe contrasting regimes in different parts of

the basin. Therefore, it is difficult to capture the trend variation of climate to

catchment’s response.

2.3 Upper Indus Basin Dependency on Multiple

Climate Variables: Studies and Models

Due to its geographical location and continental climatic effects, UIB has been

used as a key area for variety of climate related studies [21] and captured inter-

est of many researchers during past, e.g., [33] investigated different parameters

of River Jhelum and found strong correlation between snowpack and water stor-

age. De Scally [34] performed sensitivity analysis using climate variables of UIB

to stream-flow using MODIS satellite product. Hewitt [35] proved that precip-

itation over UIB is highly affected by orographic barriers. Not only this, [36],

[37] and [38] have also evidenced the dependency of stream-flow of the region on
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meteorological and climatic variables. According to [39], the hydrology of UIB is

poorly understood because the quantification of water balance is highly variable

temporally as well as spatially due to complex terrain of the basin. He estimated

the high altitude precipitation through glacier mass balance and found this far

beyond than the observed or estimated gridded precipitation. Further [40], used

this corrected precipitation data set and developed model that is calibrated using

river runoff, snow cover and geodetic glacier mass balance. He concluded that

the future climate of UIB is highly uncertain and there is a projected decrease in

glacier volume which will ultimately results in decreased river flow. He utilized

climate simulations to forecast a change in the region and the main focus was

on the analysis of precipitation change signals using General Circulation Model

(GCM). Mukhopadhyay [29] developed a distributed model for flow estimation in

UIB utilizing both spatial and temporal data.

Most of the studies carried on the UIB are more likely climate assessment studies

[21], [22], [25], [30], [40], [41], [34], [35], [36], [39], [42], [43], [44], [45] and a few

of them focused on climate modeling, specifically hydrological modeling, e.g. [29],

[46], [47], [48], [49] and [50]. However, these studies were basically carried out

with the lumped hydrology of a portion of this large river basin, e.g. [48] focused

only on Shigar river and its catchment, [49] performed hydrological modeling by

focusing only Hunza catchment, [51] and [15] on Gilgit catchment, [46] developed

Snowmelt runoff models for two sub catchments of UIB including Hunza and

Astore. Moreover, the estimation interval for the models developed for UIB is

usually high, e.g. [47] developed seasonal stream flow estimation models, whereas

monthly models are developed by [29] and [52] for stream flow estimation in the

region. The shorter intervals for stream flow estimation like weekly or daily are

more preferable for flood estimation and management in the region. Similarly,

the most of the models developed for the UIB are either purely snow-melt runoff

models [46] or rainfall runoff models [5] and they entirely missed the concept of

data-fusion. The hybrid models covering a larger part of the UIB catchment and

containing multiple datasets from different sources and types, is the need of time

to efficiently model the stream flow in the region.
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Previously, many researchers have carried climate assessment of UIB and deter-

mined the variables, which are important to capture the response of this complex

catchment e.g. [36] stated that despite of the basins contrasting regimes, the re-

sponse of the UIB could be forecasted through precipitation measurements, taken

at different valley stations located within the catchment. He also concluded that

the flow originating in higher altitudes is dependent upon the area of catchment

that is covered by snow. Further, [34] performed a sensitivity analysis for the as-

sessment of flow in the UIB and found that the meteorological point observations

like precipitation and temperature have the predictive relationship to the flow of

the region. Similarly [53] indicated that the temperature plays an important role

in the snow-melt models developed for the UIB. Also, confirmed by [30] that the

UIB regimes are susceptible to change due to rapidly changing precipitation and

temperature patterns. Further, many researchers pointed that snow cover dynam-

ics play an important role in defining the hydrological regimes of the area [22] [46].

The snow and glacier melt are the major contributors to the flow generated in the

UIB [49], [41]. Charles [47] mentioned the snow-melt as the dominant source of

flow in the UIB and glacier melt as the second.

The snow-melt is accelerated when the more solar radiations are absorbed at the

surface. Bilal [25] carried a snow cover variation analysis on UIB using different

set of climate variables such as temperature, precipitation, relative humidity and

solar radiation. He observed that SCA of UIB has the inverse relationship to the

intensity of solar radiation. Similarly, [54] indicated that increasing values of so-

lar radiations can shrink the snow cover area and accelerate the melting process.

The higher value of solar radiation cause a rapid snow melt in the eastern part

of the basin [29]. Remesan [55] pointed out the importance of solar radiation in

hydrological modeling. [56] used solar radiation as an input variable for flow es-

timation in upper Ticino River Basin. [57] mentioned that the solar radiation is

a crucial variable in estimating snow melt estimation and neglecting it may lead

to higher errors. Further, [58] demonstrated that for UIB, significant correlation

exist between the solar radiation, temperature and precipitation measurements.

Previously, many researchers have utilized solar radiation in hydrological modeling
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e.g. Singh used solar radiation as one of the input variable for hydrological mod-

eling of the UIB [49]; [59] for discharge estimation at Waiokura catchment, New

Zealand; [60] for mountainous catchment in China; [61] for stream flow forecast at

catchment located in east Australia and [57] for snow glacier melt estimation in

Andean glaciers, Bolivia.

The limited on-ground network present in the UIB is unable to cover the extent

and complexity of the basin [22]. The dependency of flow on contrasting regimes

of the basin urges researchers to use another sources of data to develop a better

understanding of the catchments behavior. Literature indicated that remotely

sensed observations such as snow cover area and land surface temperature obtained

through MODIS provide significant analogues for on-ground observations [41].

Previous studies on the UIB evidenced that a predictive relationship exists between

satellite observations and on ground observations of the basin. As [41] reported

that remotely sensed spatial data products (MODIS SCA and LST) can provide

adequate analogues for these point observations. He also suggested that the fusion

of these two types of data may improve the assessment of the hydrological impact

of the UIB. Similarly, [46] has shown the UIB flow dependency upon satellite-

derived SCA and simulated the runoff using Snowmelt-Runoff Model (SRM). The

importance of SCA derived through satellite images is increased exponentially

when a snow fed catchment is complex and poorly gauged.

2.3.1 Importance of Satellite Derived Snow Cover Area

(SCA)

The mountainous catchments located at higher altitudes, receive their most part

of the precipitation as snow. Therefore, in such catchments, snow cover dynam-

ics plays an important role as change in snow cover area directly relates to the

response, which is in the form of flow in the streams. With the constraints of

topographical complexities and confined economical resources, it is often practi-

cally impossible to physically measure the snow cover changes in such catchments.

However, in catchments where most part of the flow is derived by the snow-melt,
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the snow cover dynamics plays a crucial rule in estimating the response of the

catchment and could not be neglected.

Snow cover area (SCA) is considered as an important factor for many climate

change and water management challenges [62]. It plays a vital role in estimation

of stream flows for mountainous areas where the flow is mostly generated through

melting of glacial masses [63]. The balance of these masses define the contribution

of snowmelt to runoff [64]. The magnitude of snowmelt could be obtained through

calculation of changing SCA of a typical region.

Remote sensing offers a wide range of options through a set of satellites to check

the spatial and temporal variation of snow cover extent. Most of these satellite

observations which are essentially the gridded data-sets, are easy to use and freely

available, e.g. [40], [65], [30]. Although, these gridded datasets have the capacity

of observing multiple parameters at the same time with more Ariel coverage but in

some cases the use of this data alone, may create erroneous results. For example,

in the complex terrain like UIB, where the grids are often larger than the spatial

variability of precipitation and the adopted interpolation schemes may add up and

lead to uncertain outcomes. Similarly, [66] observed that the satellite observations

underestimate the precipitation in areas where significant snowfall occurs. So, the

use of gridded datasets alone, for hydrological estimation, questionable.

To overcome this problem, remotely sensed data could be used in addition to on-

ground observations for hydrological forecasting, which is easy to use and freely

available in most of the cases. The change in snow cover area could be assessed

through satellite images, specifically downloaded for this purpose. The fusion

of these two types of data provides a better picture and it is expected that more

information about the catchment results in better hydrological forecasting models.

The main drive of utilizing snow cover area is to improve the real time stream

flow forecasting for a catchment which is complex and has a limited meteorological

network by combining the two sources of data (on-ground discharge data & satellite

derived SCA). It is expected that the fusion of this multi-source data could create a

better initial state with less uncertainty, which ultimately results in better stream
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flow forecasts for a difficult topographical catchment such as UIB. The fusion of

these input variables has been carried out with the help of Gamma Test that

provides an initial estimate of the Mean Square Error (MSE), prior to modeling

for each set of input combination/mask. Moreover, this study has also explored

the use of ANN for stream-flow estimation in a mountainous catchment, where

greater part of the flow is derived through melting of snow.

2.3.2 Summary

The existing models developed for Pakistani part of the UIB has mainly focused

the lumped portion of the large basin with limited inputs and missing data con-

straints. The trend studies on the climate of UIB exist but with a little focus on

hydrological modeling. The flow of the UIB is mainly derived by snow-melt but

also observe variation to multiple climate variables. SCA is an important factor,

which should be considered as one of the main input variable for the catchments,

which observe dominating snow-melt regimes. Satellite derived SCA could be used

for the estimation of stream flow in the UIB as the previous studies found strong

correlation between the remotely sensed SCA and catchment’s response in the

region.

2.4 Non-Linearity, Noise in Hydrological Data

and Need for Data Preprocessing

The real time hydrological data may contain noise, missing information and devi-

ation from its original scale due to complex and nonlinear nature of hydrological

processes. The data when used as it is in hydrological forecasting may create un-

certainty in hydrological models, especially in data-driven models which fully rely

upon the input-output data.

The data based models for hydrological estimations are becoming popular day

by day owing to increase in data availability and increased computational ability
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with the development in computer techniques and applications [6]. However, the

accuracy of these hydrological models entirely depends upon the quality of the

data which are essentially the hydrometric observations. The uncertainty in these

observations may leads the uncertainty in the models themselves [67]. Similarly,

the uncertainty may occur with limited availability of stream flow data due to

inadequate observational network as compared to the extent of the watershed

[68], [69]. Which is the case in most of the developing countries where watersheds

are ungauged or poorly gauged [70].

It is evident that the trust in hydrological models could only be achieved with

the surety that the hydrometric observations are correct and verified. Because

these observation serves as the foundation for any empirical or statistical model

and are extensively used in the process of calibration. Therefore, the hydrometric

observations should be as accurate as possible as their accuracy will be ultimately

reflected in the performance of hydrological models. Besides the quality of data,

the appropriate selection of climate variables is equally important and plays a

crucial role in developing efficient climate estimation models.

2.4.1 Artificial Neural Networks (ANN)

Advancement in computational approaches and methodologies directed researchers

to adopt innovative methods to model the real world problems. However these so-

phisticated methods always bear limitations, boundary conditions and sometimes

uncertainties. The same is true in case of hydrological modeling, where model-

ing options often bear uncertainties due to the complex nature of hydrological

processes. These processes are usually described by empirical laws and rely on

catchments characteristics, climate variables and hydrological observations. The

data-driven hydrological models entirely depends upon observations/data with a

limited or no knowledge of underlying physical mechanism. The nonlinearity in-

volve in hydrological data may require non-linear datadriven models to capture

the complex relationships between input output. These models usually rely upon

methods of computational intelligence and machine learning.
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During recent past, the use of Artificial Neural Networking (ANN) techniques in

hydrologic forecasting remains the focus of many researchers [71] and its capac-

ity of performing well in hydrologic modeling has also been accepted by ASCE

Task committee [72], [73]. Recently, Artificial Intelligence (AI) based data-driven

modeling have become quite popular among hydrologists due to their ability of

dealing nonlinear hydrologic data, especially in rainfall-runoff modeling; [74] and

[75]. Although, Artificial Neural Networks (ANNs) are self-adaptive in nature and

considered capable to deal with non-linearity of the data [73], however, their per-

formance could be affected by the quality of input data [76].The presence of noise

in data may hinder the performance of ANN models because an inappropriate in-

put data may lead to an inappropriate learning map [77]. Owing to the nonlinear

nature of hydrological process, the resulting hydrological observations may contain

undulations, missing information, skewness and large deviations from its original

scale. Therefore, the use of original time series data for hydrological forecasting

may affect the prediction accuracy of data-driven models [50].

2.4.2 Data Pre-processing Options and Practices for ANN

Artificial Neural Networks (ANNs) are capable of capturing the complex and non-

linear relationships between inputs and outputs and they do not require detailed

knowledge about catchment and underlying physical processes [74], [78]. How-

ever, an inappropriate input data to ANN models may create inappropriate learn-

ing maps, that ultimately results in reduced efficiency of hydrological models [77].

Similarly, the accuracy of these models depends upon a careful selection of elements

that are user-defined such as model structure, data length selection, parameter op-

timization and data normalization techniques etc. [79].

Apart from the selection of suitable network-type and its architecture, a suitable

method to reduce over-fitting is required for the successful application of ANN

models [80]. The conventional methods to reduce over fitting in ANN are; reg-

ularization [81], early stopping [82] reducing complexity [83] and noise injection

[84].
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Preprocessing of data plays an important role in development of ANN models,

especially when applied in a real time hydrological forecasting [85]. Data prepro-

cessing for an ANN type model may include transformation of data by applying

different mathematical functions which are essentially called “data transforma-

tions”. These transformations provide ease of description, vibrant understanding

and enables to perform further operation that is more acceptable and useful for

data driven modeling.

Data preprocessing could also be used to accelerate the learning rate of an ANN

model through eliminating the irrelevant data [86]. Preprocessing of data provides

high accuracy with less computational effort in improving the training capability

of ANN models [87]. Other researcher have also reported that the performance of

ANN models could significantly be increased using transformed data-set instead

of using original data as input to ANN models [88], [89], [90], [91], [92], [93], [94].

In addition to data transformation, the optimal selection of inputs also plays a

crucial role in the accuracy of ANN based stream flow forecasting models. Afan

[95] reported a significant improvement in the efficiency of ANN based stream flow

forecasting models with the process of input selection through Genetic Algorithm

(GA). Similarly, [96] highlighted the importance of selection of climate variables

for stream flow forecasting in Upper Senegal River.

Previously, the types of preprocessing techniques that have been applied to im-

prove ANN models in water resources are Single Spectrum Analysis (SSA); [97]

Wavelet Analysis (WA); [98], [99], [3], [100] and Empirical Mode Decomposition

(EMD); [101], [102]. Investigation of a physical process through these mathemat-

ical transformations may cause some errors that must be taken in account [103].

Both, WA and EMD transformations are greatly affected by the boundary effects

and may result in poor modeling quality and lower prediction performance in

stream flow estimation models [104] and [3]. Therefore, selecting a right transfor-

mation is quite critical in development of hydrological models as uncertainty in the

input data may result in uncertainty in the models themselves [67]. Although, no

constraint of normality is considered in ANN type models still their performance

could significantly be increased using simple normalization techniques [105].
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Most commonly used transformations in data-driven modeling are log, inverse

and square root transformations [106]. Dirk [107] used square root, cube root and

logarithmic transformation for rainfall data analysis. Log normalization was used

to standardized the input data for ANN based stream flow estimation models [5]

and for reservoir level estimation models [108]. Hassan [109] applied the Box-Cox

transformation in order to make data more convenient for the development of ANN

based sediment load estimation models.

The practice of trying different types of transformations on input data and checking

their impact individually, on the model improvement is not practicable. The

hydrological data is complex and may have varying trends. So, it is quite possible

that one type of transformation is suitable for a set of hydrologic data and the

same transformation is highly unsuitable for another set of hydrologic data. Same

is the case with the modeling options as a specific model could provide better

results when the input data to this model is transformed by a specific type of

transformation.

In this case, the Box-Cox transformation as provided by [110] provides an opportu-

nity for researchers to find the optimal normalizing transformation that fits to their

data as it simultaneously corrects non-normality, nonlinearity and heteroscadistic-

ity in the data. The Box-Cox transformation is not a single transformation rather

it is a family of power transformation that transforms the data through a power

factor, Lambda (λ). While applying the Box-Cox transformation, selecting the

suitable value of λ that makes the data more normal is quite crucial. As chang-

ing values of λ, may change the shape of the data and ultimately may affect the

modeling performance of a data-driven model.

2.4.3 Summary

The presence of noise and non-normality in hydrological data hinders the perfor-

mance accuracy of models despite of their defined ability to capture non-linearity.

The appropriate pre-processing procedure is required to improve models by im-

proving data. During recent past, Artificial Neural Networks (ANN) have been
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successfully used in real time hydrological forecasting as they have advantage over

traditional forecasting models with no constraint of data normality and nonlin-

earity. However, the studies indicate that the training capability of ANN could

be improved through data preprocessing options. The preprocessing of raw data

provides an opportunity to improve the data quality through reducing noise, cre-

ating equal spread and eliminating those inputs which are creating hindrance in

the development of smooth modeling process.

The motive of applying data preprocessing is to improve the accuracy of ANN

based stream flow estimation models through; 1. Scaling of data to proportionate

with the transfer function in output layer and normalization of data to create

better learning maps; and 2. Screening of input variables to eliminate the inputs

that are creating hindrance in the process of developing smooth models.

2.5 Data Fusion: Need and Practice in Hydro-

logical Forecasting

Advancement in computer applications, innovations in data sampling and im-

proved methods of modeling has not only provided facilitation to hydrologic mod-

elers but also created complexities and sophistications [20]. There are number of

linear and non-linear modeling options available to deal with the complexity of

catchment characteristics including process based physical models and data based

black box models [2]. The process based models reflect the underlying physical

process and essentially are knowledge driven models, while the data driven mod-

els deals and play with “data only” without considering the detailed underlying

physical process [5].

The choice of modeling option for hydrological estimation depends upon avail-

ability of data observations, physical information and utilization of purpose [59].

Development of models for hydrological estimation, which is not only accurate but

also reliable, is an important issue in water management communities [70]. Previ-

ously, the researchers have used various types of flow estimation models, ranging
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from lumped empirical to physical distributed models, with diverse mathemati-

cal equations and relationships [111], [112]. Both the data-driven and physical

distributed models have their advantages and disadvantages while being used in

hydrological estimation. Although, the data driven models often possess higher

performance efficiency but their applicability is valid only within the limits of the

boundary of the data.

Similarly, the physical models are better at representing the spatial variability of

hydrological parameters but they require extensive amount of data for physical

interpretation and rigorous computational effort [113]. Besides these two options,

conceptual lumped models provide another opportunity in the field of hydrological

modeling with an advantage of simple structure and low computational cost. These

models are constructed by inter-linked conceptual elements, in which each element

represents a specific hydrological component [114].

Comparison of models also provide an opportunity to quantify the uncertainty

present in the model, through multi-model development process [115], [116] and

[117]. Previously, many researchers have used this comparison to analyze the

performance of different types of models developed for stream flow estimation

[118], [119], [120], [121] [122], [123], [124], [125], [60] and [126]. However, a very few

of them have focused on the mountainous catchments which are not only complex

but also observe data scarce conditions. The UIB has the similar background and

receive limited attention in terms of data selection, data preprocessing and data

fusion in hydrological modeling.

In developing countries, most of the watersheds are ungauged or poorly gauged

due to confined economical resources [70]. Thus, creating a problem of limited

availability of the data for hydrological models, especially in the case of data-

driven models. As, the stream flow data is highly nonlinear in both temporal and

spatial aspects, therefore, the uncertainty in such data may create uncertainty in

the hydrological models themselves [67].

The uncertainty in data-driven hydrological models could be reduced using multi-

ple source/type information instead of using single source/type information. Azmi
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[127] reported that the hydrological models could only be improved through “ob-

servations” and not by increasing the complexity of the models. This is the reason

that despite of choosing advanced modeling options to model the response of com-

plex mountainous catchments, it is difficult to eliminate the “uncertainty” because

the available data is limited due to little coverage over the terrain [128]. Dijk [129]

suggested to use the new breed of observations, in combination with the on-ground

observations, containing remotely sensed data, airborne data and in-situ sensor’s

data to improve the performance of hydrological models.

Dasarathy [130] reported that the use of limited or single source data may hinder

the performance of hydrological models. Most of the studies on multi-source in-

formation fusion assumed that use of more information results in better outcomes

[131]. According to [20], data fusion is defined as the integration of data from

different natures and different sources but it encourages the amalgamation of orig-

inal as well as processed information to produce an output that is more useful and

acceptable.

Normally, data fusion is considered as the process of combining/fusing information,

which are essentially measurements or features collected from a different set of

sensors to create a comprehensive data-set or a picture. This integrated data-

set or picture could be used for the estimation of parameters and/or for problem

classification purpose. This type of datafusion is common in the applications of

remote sensing and geophysics [19].

While dealing with real time stream flow estimation, it is difficult to obtain hy-

drological data from a set of variable sensors or sources as spatially dense in-situ

networks are limited due to confined resources, especially in developing countries.

Similarly, most of the existing data fusion methods are either able to work with

information from a same mode/family (image at a particular time) or a temporal

information at a specific spatial point or object [132], [133] and [134]. Although

some of them are able to fuse spatial data with point observations [135], but still

they are unable to integrate spatial data with distributed temporal data, effi-

ciently; which is an essential requirement to create a better initial state in many

hydrological models.
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Therefore, data-fusion approaches should be re-invented or re-explored to make

its applications more practical in the field hydrological estimation. According to

[129], it is not only of a scientific interest but a bare necessity to combine new

observations like insitu sensors data, airborne data and remotely sensed data with

the traditional on ground observations to create hydrological models that behave

better. The same is reported by [127] that operational hydrological forecasting

may be improved through the use of multiple source information as compared to

single source information.

Earlier, it has been reported by [136] that the on ground hydrological observations

provide a real information about the hydrological process at a point and these

observations could be used to calibrate the model inputs. However, their spatial

and temporal distribution could be affected by the limited data availability [137].

[138] reported that if the rain gauges are installed uniformly over the catchment

area despite of their limited numbers, they still can provide reasonable accuracy

for the measured observations, however in the remote areas the distribution of

gauges is irregular and the data collected through these stations doesnt represent

the true picture of hydrological process. In addition to the on-ground observations,

the satelitte derived observations are now being used to enhance the efficiency of

hydrological models developed on complex terrains, where the ground observations

are limited due to poor site accessability [32]. The change in snow cover area for

such in-accesble complex terrains could be determined using MODIS products,

which provides the high resolution imageries with accuracy over 90% [139], [140]

and [141].

The previous work on hydrological estimation through data-fusion approach has

focused on many aspects to improve hydrological forecasting through imparting

multiple source information (data integration/selection), model-data coupling and

model-model coupling, e.g. [17] proposed an algorithm to fuse the radar and gauge

precipitation time-series to capture the better response of the watershed.

The results showed an increase in R2 = 0.74 for models developed with fused

data set as compared to the models utilizing only gauge observations (R2 = 0.54).

Data fusion approach is used to improve river-flow forecasting, by combining the
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multiple sources data, with NSE values more than 95% [20]. [142] proposed a clus-

ter fusion frame-work to model the important features of reservoir inflow. [112]

performed model-data fusion through coupling of Xinanjiang Rainfall-runoff (RR)

model with optimization algorithms and data assimilation techniques, to simulta-

neously improve the uncertainty in stream flow data and the model structure. The

models developed with data assimilation techniques showed better R2 > 90% as

compared to the models developed without data assimilation (R2 = 86%). [143]

improved discharge estimation models through fusing remotely sensed SCA with

MOHYSE hydrological model. The results indicated an increase of NSE from 72%

to 85% and decrease of RMSE up to 22% for the models developed with integrated

data set. Similarly, a multi-sensor satellite data fusion methodology is adopted

by [18] to produce ET maps over Choptank River watershed with an improve-

ment in errors up to 27%. [144] proposed coupling of global climate models with

hydrological models to improve stream flow forecasting that exhibited correlation

coefficient values more than 90%.

Although the data fusion within ANN is not new and it has been successfully uti-

lized in many fields [145], [146], [147], [148], [149] but its application in hydrological

forecasting received a limited attention as compared to its overall significance. Pre-

viously, [20] evaluated a variety of data fusion strategies in hydrological modeling

and concluded that the data fusion by ANN outperformed. Shu and Burn [150]

combined individual ANN models to enhance the estimation of pooled flood fre-

quency. Azmi et al. [127] performed model data fusion by incorporating ANN to

improve hydrological forecasting. However, the previous studies are inadequate to

exploit the full benefits of data-fusion despite of its overall significance.

ANN have become quite popular in runoff modeling, specifically in areas where

catchment response is mostly dependent upon rainfall. There are many stud-

ies which have utilized ANN to develop hydrologic models on rainfall dominant

catchments [151] and [152]. But a very few have been reported for mountainous

catchments due to the fact that measuring on ground precipitation and other cli-

mate variables is quite challenging for such catchments [75]. Although there are

many past studies on the application of ANN for snow estimation such as [57],
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[153], [154], [155] and snowmelt- runoff modeling [156], but a very few have been

reported which utilized SCA as one of the input variables for ANN based flow esti-

mation models [156], [157], [75]. Whereas the satellite-derived SCA in addition to

gauge-observations could be used to create a better input data-set and ultimately

better stream flow estimation models.

The utilization of ANN based models for stream flow estimation in complex catch-

ments, has received limited attention as compared to their overall potential. The

dependency of such catchments on multiple climate factors often make it difficult

to select the appropriate set of input variables for stream flow estimation in the re-

gion. For this, a careful selection of input variables is crucial to make the data-set

appropriate for model development. One of the important climate variable that

has a direct impact on most of the complex terrains located in high altitudes, is

snow. The same is the case with the UIB, where flow is the main derivative of

snow melt and should be incorporated in development of stream flow estimation

models in the region.

2.5.1 Summary

Multiple type/source information is required to capture the complexity of a catch-

ment which observe contrasting regimes. The application of fusing multiple type/

source data in hydrology is limited, despite of the overall significance of the data

fusion approaches.

2.6 Overall Summary

The effectiveness of data-driven hydrological models depends upon many others

factors besides the data itself, like model architecture, calibration and model con-

figuration. Still the importance of “data” comes at first, because an inappropriate

hydrological data may alter the performance of carefully selected advanced model.

Therefore, the first attempt to improve hydrological models should include the

use of appropriate data that describe the hydrological processes more accurately
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with less noise and uncertainty involved in it, rather improving the complexity of

the models, itself. But the quality of hydrological data obtained through already

installed gauges is itself questionable as most of the watersheds in the developing

countries are either ungauged or poorly gauged due to confined financial resources.

The mountainous catchments suffer more because they bear both, the lack of cover-

age and the complexity of the terrain. These catchments often observe contrasting

regimes and the limited available meteorological network creates uncertainty not

only in the hydrological data but also in hydrological models. On the other hand,

the complex catchments with varying regimes require multi-type and multi-source

data to effectively model their response. The response is generated in the form of

tributaries that carry stremflows from different part of the basin and drain into

the main stream.

Although, many previous researchers have evidenced the importance of data im-

provement in hydrological forecasting. However their use is neglected as compared

to the overall importance of the subject. The uncertainty in hydrological estima-

tion could be significantly reduced by providing a better data input-state to the

hydrological models, because the presence of uncertainty in hydrological data may

affect the accuracy of hydrological models [158], [159], [160].

A better input state may include; improving hydrological data through data trans-

formation, finding best input combinations, appropriate data length selection and

use of advanced data fusion options etc. Similarly, the use multiple input vari-

ables observed through different sources could be used to get a better picture of

the hydrological phenomenon, especially in catchments which are complex, observe

contrasting regimes, and has dependency upon multiple climate factors. The same

is the case with Pakistani part of the UIB, which being a main source of water

for Pakistan, has many challenges to combat water shortage issues and maximize

water control efficiency in the water management sector of Pakistan.

Likewise, the limits of fusion are presently not characterized and there is no clear

guidance that what amount of data should be entered into a fusion process and

whether or not the use of multi-source data would be advantageous, 2. The errors

in data may cause problems and it is quite possible that the use of erroneous data
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in fusion process produce even less accurate results than using non- erroneous data

from a single source.

Therefore, it is expected that the use of multi-type data would be beneficial for

complex watersheds that observe contrasting regimes as the response of such catch-

ments could be a function of multiple parameters such as snow melt, snow depth,

temperature, rainfall, solar radiation, humidity, etc. Similarly, it is anticipated

that the use of multi-source data provides a better picture for such catchments

which are not only complex but also bear a problem of limited availability of

on-ground observations.

The similar conditions apply on the Upper Indus Basin (UIB) that faces both,

a contrasting hydro-meteo-cryospheric regime and the limited meteorological net-

work [32]. The motivation of the current research is to reduce the uncertainty

by creating a better initial state for hydrological forecasting models through us-

ing multi-type (hydrological, meteorological and cryospheric) and multi-source (on

ground and satellite derived) data.

To make the integrated/fused data set that can accurately represent the catch-

ments picture, the choice of input variables that affect the catchments response

of the UIB is crucial. For the current study, the selection of variables among the

many candidate input variables are made with the help of literature review. The

variables are chosen on the basis of their role in affecting the response of UIB

with the help of various forecasting models developed and evaluated by previous

researchers. The current study utilizes four (4) types of variables (on ground ob-

servations) including discharge (Q), precipitation (P), global solar radiation (SR)

and satellite derived snow cover area (SCA). Out of which the first three variables

(Q, P and SR) have been used for data transformation, whereas all the four (Q,

P, SR and SCA) have been utilized for data-fusion purpose. The data observa-

tions from multiple stations and snow cover area of 3 catchments help to make a

comprehensive data-set, which sums up to a total 25 inputs.



Chapter 3

Study Area & Methodology

3.1 Background

The research work is divided into three (03) main parts and methodology is

adopted to achieve the research objectives as defined in Chapter 1. The first

part of the methodology targets the 1st objective (Section), the second part (Sec-

tion) targets the 2nd and the third part (Section) targets the 3rd and last objective

of this research work.

The methodology of the first part of the research work provides the methods to

improve ANN based stream flow estimation through data preprocessing. The need

of data preprocessing is discussed in detail with the help of literature review in

Chapter 2. The second part targets the 2nd objective through adding satellite

derived SCA as an additional variable to model the response of the UIB. The

previous chapter showed the dependency of UIB stream flow on changing SCA

and the importance of satellite derived SCA for complex catchments. Whereas,

the third and final part includes a more comprehensive dataset with data fusion

option to develop a data fusion system for the UIB stream flow measurement. The

importance of data fusion for catchments observing contrasting regimes is high-

lighted in both Chapters 1 and 2. The current methodology differs the previous

practices as already defined in the novelty of this research work.

37
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The study area is same for all three parts, which is the Pakistani part of the

Upper Indus Basin. Similarly, some of the procedures as the Gamma Test, M-test

and ANN model development are consistently used throughout this research work.

However the ANN model architecture may vary because of the different data-sets,

used for all the three parts according to the focus and requirement of the studies.

The general flow chart of the research work is presented in the Fig. 3.1.

38 

 

 

FIGURE 3.1: General Methodology Flow Chart 

3.2 Study Area 

The catchment of the Indus River begins from the mountains of Tibet. It originates from 

the mountains of the Hindukash and the Himalaya and flows on southwesterly course 

largely through Pakistan but also through India, Afghanistan and China [40]. The total 

length of the Indus is 3160 km and it covers an entire area of 900,930 km2, out of which 

Figure 3.1: General Methodology Flow Chart
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3.2 Study Area

The catchment of the Indus River begins from the mountains of Tibet. It originates

from the mountains of the Hindukash and the Himalaya and flows on southwesterly

course largely through Pakistan but also through India, Afghanistan and China

[40]. The total length of the Indus is 3160 km and it covers an entire area of

900,930 km2, out of which 528,156 km2 lie in Pakistan [161]. Major portion of

this mountainous catchment is covered with snow and glaciers, which contributes

more than 80% of the flow for the Indus Basin Irrigation System (IBIS) [22].

The Upper Indus Basin (UIB) covers a huge geological area (> 200,000 km2) and

it observes large altitudinal variations with a mean elevation of 4000 masl (meters

above sea level) [46]. The UIB terrain consists of high elevated mountains with

extreme roughness and complexity. With several peaks having elevation more than

6000m, the basin is a widespread belt of ridges and high valleys. The main source

of water resources is derived by the Karokaram range and covers the major part

of the basin with huge glaciers and snow peaks [44].

Before the Indus reaches the plains, it is impounded behind Pakistan’s largest dam

at Tarbela, termed as ‘rim station’ where water is stored, measured, and diverted

into an extensive network of canals in the province of Punjab. The Indus basin

area, starting from its origin, up to Tarbela dam is known as the Upper Indus

Basin (UIB) which is used as an area of interest for this part of study as shown in

Fig. 3.2.

Climate change has a significant impact on water resources worldwide and may

result in change in flow magnitude, variability and frequency of extreme events

[162]. It becomes even more significant for the hydrology of mountainous catch-

ments, which are located in high altitudes and are normally covered with snow

and glaciers [163].

The upper part of the Indus Basin is also a mountainous catchment and this is

why the response generated through this catchment is very sensitive to the changes

occur in different climate factors.
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FIGURE 3.2: Upper Indus Basin: Gauging Stations (Source: WAPDA)Figure 3.2: Upper Indus Basin: Gauging Stations (Source: WAPDA)
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Climate changes directly affect the shape of flood hydrograph and could create

a risk of food security of the people of the Hindu Kush, the Karakoram and the

Himalaya (HKH) mountain ranges [48], as the economy of this region is highly

dependent upon water availability [164]. Impact of climate change on the Indus

basin includes rise in temperature that ultimately resulted in decreased river flow

[11].

The evidence of this change is studied by [165] who reported the depletion of

glacier volume over the mountainous ranges of Hindukush and Himalaya. Fowler

and Archer [21] reported a rise in summer temperature that is the basic cause for

rapid glacier melt in the region. Similarly, [166] indicated a change in temperature

in pre-monsoon and monsoon period for this region. It was also noticed by [31]

that there is a significant change in precipitation in the area of Upper Indus Basin

(UIB) in both summer and winter seasons during period of 1961 to 1999.

Due to its geographical location and continental climatic effects, UIB has been

used as a key area for variety of climate related studies [21] and captured interest

of many researchers during past, e.g., [33] investigated different parameters of

River Jhelum and found strong correlation between snowpack and water storage.

A weather generator had been developed by [58] for the estimation of different

environmental parameters in the periphery of The UIB. Forsythe [34] performed

sensitivity analysis using climate variables of UIB to streamflow using MODIS

satellite product. Hewitt [35] proved that precipitation over Upper Indus basin

is highly affected by orographic barriers. Not only this, [36], [37] and [34] have

also evidenced the dependency of stream-flow of the region on meteorological and

climatic variables.

According to [39], the hydrology of UIB is poorly understood because the quan-

tification of water balance is highly variable temporally as well as spatially due to

complex terrain of the basin. He estimated the high altitude precipitation through

glacier mass balance and found this far beyond than the observed or estimated

gridded precipitation. Further [40] used this corrected precipitation data set and

developed model that is calibrated using river runoff, snow cover and geodetic
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glacier mass balance. He concluded that the future climate of UIB is highly un-

certain and there is a projected decrease in glacier volume which will ultimately

results in decreased river flow.

The above studies were basically carried out with the lumped hydrology of a por-

tion of this large river basin. For better understanding of different behavioral

phases of the catchment, it is necessary to gather as many information about

the catchment, as possible, because the catchments with varying regimes observe

complex hydrology and often required multi-type and/or multi-source data to ef-

fectively model their response. The hindrances in the development of accurate

hydrological models in the UIB includes; political sensitive trans-boundary area,

complex terrain and poorly gauged catchment. The uncertainty in hydrological

models for such catchments is often generated due to limited catchment informa-

tion, inappropriate variable selection and improper model calibration.

For the second part of the study, which considered addition of satellite derived

SCA in the data-set, three sub basins of UIB located in northern part of Pakistan,

namely Gilgit, Astore and Bunji. Both, Astore and Gilgit rivers are tributaries of

the Indus River while Bunji basin is directly draining into the River Indus form

north to west and into River Astore from eastern side. Astore River originating

from Burzil Pass runs through Astore valley, drains the Deosai Plateau and joins

River Gilgit at 35◦32’N, 74◦42’E. The boundary of Gilgit basin is defined by loca-

tion of Alam Bridge Gilgit (74◦18’E; 35◦55’N), where a stream gauge is installed

by Water and Power Development Authority (WAPDA).

The Gilgit River joins the River Indus at Juglot near Bunji where three (03)

mountain ranges, Hindu Kush, Karakorum and Himalaya (HKH) meet. The total

catchment areas for Astore and Gilgit are 4040 km2 and 12095 km2, respectively.

The peaks in Astore catchment are even higher than 8000 m.a.s.l. and remained

covered with snow especially during winter season. The upper part of Gilgit basin

also has persistent snow cover [167]. The upper part of Gilgit basin also has

persistent snow cover [51]. The snowmelt response of these three basins is observed

at Bisham Qilla (72◦52’E, 34◦55’N) located, upstream of Tarbela Reservoir, at 580

m.a.s.l. The study area is presented in Fig 3.3.
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Figure 3.3: Study Area (UIB): Catchments delineation using Digital Elevation
Model (DEM)

3.3 Improving ANN Based Hydrological Fore-

casting through Data Preprocessing

The methodology of this part of research work starts with the collection of catch-

ment information of the UIB, continues with the analysis of data and formation of

data set, followed by a two-step preprocessing procedure and ANN based model

development, which is presented in Fig. 3.4.
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FIGURE 2.1: Methodology Flow Chart Figure 3.4: Methodology Flow Chart
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3.3.1 Data-set

The antecedent data condition for the study is obtained from Surface Water Hy-

drology Project (SWHP), Water and Power Development Authority (WAPDA).

The available data-set consists of weekly records of Precipitation (P ), Global So-

lar Radiation (SR) and Discharge (Q) at a total of thirteen (13) stations located

within UIB, as presented in Table 3.1. The data length spans over 575 weeks

(1995-2005). The Table 3.1 lists station name, its elevation (masl i.e. meters

above sea level), and the variables for which the data is available. Out of total

twenty one (21) variables, twenty (20) variables are considered as inputs and one

(1) variable as output, which is discharge (Q) at Tarbela.

Table 3.1: Details of Gauging Stations and respective observations

Sr.

No.

River Station Elevation

(masl)

Variables No of

Variables

1 Indus Deosai 4142 P*, SR* 2

2 Indus Rama 3300 P, SR 2

3 Indus Hushey 2850 P, SR 2

4 Indus Rattu 2745 P, SR 2

5 Astore Astore 2546 P 1

6 Kachura

Lake

Kachura 2341 P, Q* 2

7 Indus Sakardu 2228 P 1

8 Gilgit Gilgit 1430 P 1

9 Indus Bunji 1403 P, Q 2

10 Indus Chilas 1265 P 1
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Sr.

No.

River Station Elevation

(masl)

Variables No of

Variables

11 Indus Shatial 1040 Q 1

12 Indus Basham

Qila

580 P, Q 2

13 Indus Tarbela 450 P, Q 2

Total 13 3 21

* P = Total Weekly Precipitation, SR= Average Global Solar Radiation,

Q= Average Weekly Discharge

The raw data is comprised of daily records of Precipitation in mm, Global Solar

Radiation in Watt/m2 and Discharge in m3/s. The weekly average data of Solar

Radiation and Discharge is achieved by simply taking average of a daily data in a

week, whereas the weekly precipitation data is obtained through adding the daily

precipitation in a week. The conversion of daily data into weekly data is performed

to make the each entity of data is unique and independent. The mean values of

the selected variables for the duration 1995 to 2005 are presented in Fig. 3.5.

 

FIGURE 2.3: Mean values of hydrological variables of different stations located in the 

UIB 

The variation in the mean values in the variables for different stations is a depiction, that 

the UIB observes contrasting hydro-meteorological regimes due to its spread over an 

elevation range of 200 masl to 8500 masl [80]. 

In order to ensure the quality of hydrological data, the gauging stations and the data 

duration is carefully selected for which the available data is consistent and homogeneous. 

There are no missing values in the data. The descriptive statistics of original hydrological 

data is presented in the next section while making a comparison with the Box-Cox 

transformed data-set.  

2.3.2 The Box-Cox Transformation  

Tukey [81] was the first researcher with the idea that a variety of power transformations 
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The variation in the mean values in the variables for different stations is a depic-

tion, that the UIB observes contrasting hydro-meteorological regimes due to its

spread over an elevation range of 200 masl to 8500 masl [78].

In order to ensure the quality of hydrological data, the gauging stations and the

data duration is carefully selected for which the available data is consistent and

homogeneous. There are no missing values in the data. The descriptive statis-

tics of original hydrological data is presented in the next section while making a

comparison with the Box-Cox transformed data-set.

3.3.2 Data Transformation

Data transformation is applying a mathematical function to change the format,

structure and/or values of data. Data transformation is applied on the data to

make it more efficient and easy to use for data representation and information

extraction. In case of data-driven analysis and modeling, data transformation

techniques are applied to change the data in a form which is more acceptable

to model training process and produce desirable results or outputs. Most of the

traditional estimation techniques require the data to follow normal distribution.

Although the assumption of normality does not apply necessarily on some of the

advance data driven techniques including Artificial Intelligence based methods.

However, the past studies indicate (Literature Review/ Chapter 2) that the effi-

ciency of these models could be increased significantly when the data is normally

distributed as it facilitate the better learning maps in neural networks. Moreover,

the scaling of data make the input data to proportionate with the transfer function

in output layer. Hence, enabling the researchers to train models with desirable

efficacy.

The selection of data transformation that makes the data to follow the desired

distribution could be made on the basis of hit and trail. However, checking the

impact of each transformation on the model development is not feasible. Therefore,

in order to make it more practical one could achieve the desired shape/format of

the data by targeting the specific characteristics of the given distribution. For
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example, the requirement for a data to follow normal distribution could be defined

by histogram characteristics and probability plots. The same approach is adopted

to select the appropriate data transformation to transform the data in a form

that it follows normal distribution. For, this purpose a wide spectrum of power

transformation is adopted that is often called as the Box-Cox transformation.

It must be noted that this transformation is not a single transformation, rather

it contains many other know transformation in its umbrella, e.g. Square Root

Transformation, Cube Root Transformation, Inverse Transformation and even the

Logarithmic Transformation is the special type of Box-Cox Transformation [168].

3.3.2.1 The Box-Cox Transformation

Tukey [169] was the first researcher with the idea that a variety of power trans-

formations could be thought of as a class of same mathematical function. In

mathematical form, the idea was indexed as presented by Eq. 3.1 to transform

the variable y into yλ. The formula was improved by Box-Cox in 1964 to take

into account the discontinuity at λ = 0 and later on got the name as Box-Cox

Transformation, presented by Eq. 3.2.

Y
(λ)
i =

Y
(λ)
i ; λ 6= 0

logYi; λ = 0

Yi > 0, (3.1)

Y
(λ)
i =

Y
(λ)
i − 1)/λ; λ 6= 0

logYi; λ = 0

Yi > 0, (3.2)

Where, Yi = ith value of the data () which is to be transformed, and λ = Power

Factor.

For unknown power factor (λ), Box-Cox suggested an expression presented by Eq.

3.3

Y (λ) =
(
Y

(λ)
1 , Y

(λ)
2 , . . . Y (λ)

n

)
= Aθ + ε, (3.3)
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Where, A represents the matrix of known constants, θ and ε both represent vectors

associated with the transformed values, of “unknown parameters” and “random

errors”, respectively. Although, λ can take infinite number of values but the opti-

mum value could be selected theoretically that minimizes the error and transforms

the variables towards normality [106]. This value is often selected on the basis of

so called confidence interval that contains the value of power factor, which returns

the data towards normality.

For this, one approach is to determine the upper and lower confidence levels for

a specified confidence value (often used as 95%) and check if the power factor

“1” lies within this range. If so, the transformation is not necessary and if not,

the transformation is necessary to make the data normal. The other option is

that we can select a range of power values between -5 to 5, as provided by the

Box-Cox to select the best value, which provides the best approximation of the

normality. As the formula presented in Eq. 3.2 is valid only for positive value of

variables, that’s why many researchers including [170], [171] and [172] came up

with minor variations to take account of negative values and to be applied for

special conditions.

In this study, the confidence interval came out to be -0.037 to 0.425, which in-

dicate that the transformation is required to make the data normal because the

power factor = 1 does not lie in this range. However besides this range, the other

values of power factor (λ) have been tried to include other known transformations

like square, cube root, inverse and logarithmic to make a comparison of results

achieved in form of histogram characteristics and probability plots. For this case,

the optimum value (λ= 0.005) lies with the confidence interval and selected on the

basis of histogram characteristics and relative standard deviation. The results of

which are shown in the results & discussion portion. Before applying the power

factor, the whole data is scaled between 0 and 1.

As there are no negative values in the available data-set, so the scaling is simply

achieved by dividing each entity in a data column with the maximum value in that

column. The transformed data-set with λ= 0.005, is further used for the next step

of preprocessing, which is the selection of inputs through Gamma Test.
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3.3.3 Input Selection through Gamma Test (GT)

3.3.3.1 Gamma Test

In order to develop smooth and reliable models for a given set of inputs, it is

often necessary to find the unique combination of inputs that provide minimum

noise and variance while predicting the desired output [173]. The idea of Gamma

test was first reported by [174], which states that the variation of noise on an

output could be estimated directly instead of using trial and error procedure.

This estimate is called the Gamma Statistics, which is essentially considered as the

best value of MSE (Mean Square Error) for the development of a smooth model

[175]. The Gamma statistics or gamma value is defined as the noise estimated

from the training dataset which is being used for model development. A smooth

model is often considered as the model that only captures the systematic behavior

and neglects other aspects, which are created by the noise present in the data.

WinGamma (A nonlinear modeling tool/software) assumes those models smooth

in which outputs can be determined smoothly from the inputs with only limiting

factor of noise in the data [176]. The ability of a model to capture only systematic

behavior and consequently performs well for the unseen data (testing data) is

called, generalization [177].

The generalization capability of a model could be affected by various factors that

may include, insufficient training data, irrelevant input variables and improper

parameter adjustments, etc. Early stopping is a very common method which is

used to facilitate good generalization by dividing the whole data set into three sub-

sets: training, validation and testing data sets. The model trained via training

data set is periodically checked against validation data set. The training process is

continued if the errors from the both sets reduce, otherwise the training is stopped

to avoid the so called over-fitting problems, which are very common in data-driven

models.

The other methods to improve the generalization ability of models may include pa-

rameter/ weight adjustments, regularization and noise injection methods. Model

regularization works by altering the function through adding an extra penalty to
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the error function. This enhances the generalization ability of models by control-

ling the coefficient to take extreme values. In noise injection method, a random

noise is injected to the training data-set to enhance the learning capability of mod-

els. All these technique used to improve the generalization of models, work without

any prior knowledge of noise present in the data. However, GT provides us an

opportunity to enhance the generalization capability of models with the known in-

formation of noise present in the data, even before the model development process.

The use of GT is very advantageous as:

1. Gamma value provides the measure of statistical noise present in the training

dataset.

2. The expected model performance is known prior to model development.

3. The estimated noise (Gamma Value) can be used as a stopping criteria for

model training.

4. The significance of input variables can be evaluated.

5. The need for a separate validation data set is eliminated.

Therefore, in addition to achieve the best input combination, the Gamma value

could also be used as a stopping criteria to reduce over fitting problems in ANN

modeling. As compared to the conventional approaches used for the generalization,

the Gamma test is superior in the context that the noise present in the data is

already known and could be used to access the model performance, prior to the

model building [178]. Thus reducing the need of separate validation data-set which

is usually required for conventional early stopping methods. Elshorbagy [179] used

Gamma Test as an assistive tool to select the appropriate modeling option for

hydrological predictions among the various non-linear modeling techniques.

3.3.3.2 Working Principle of Gamma Test

The Gamma Test (GT) provides us the value of Gamma Statistics or best Mean

Square Error (MSE) which is the measure of variance of noise on our desired
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output [173]. The Gamma test works on an argument that if X and Y are two

parameters and Y is a function of X, then this function can be divided into two

parts; “smooth” and a “noisy”. By considering the mean of this noise as zero, a

constant bias could be added to this function. Although, the function between X

and Y is unknown, Gamma test enables to estimate this error prior to the model

development process.

On the basis of an initial data set (xi, yi), 1 ≥ i ≥M , an algorithm can be de-

veloped between two variables x and y to capture a relationship between them.

The process involves decomposition of these variables into smooth and noisy parts

while having an assumption that y is a function of x. If f is a smooth function

between x and y and r is the part of noise which cannot be considered for by any

even model, then their relationship can be shown by Eq. 3.4.

y = f(x) + r, (3.4)

If the mean of this random variable “r” is zero then a constant bias can be engaged

into this unknown function f . Despite of the fact that f is unknown, this tool

enables us to calculate the value of noise on an output on a certain condition

which states that “As the number of data samples increase, the gamma value

becomes equal to an asymptotic value which represents the variance of a noise on

an output” [174].

This could be achieved by developing a regression line (Y = Aδ + τ) between

gamma function of outputs (Ym(u)) and delta function of inputs (δm(u)) as given

in Eq. (3.5) and Eq. (3.6). The vertical intercept of this regression line is the

measure of Gamma statistics (τ), whereas, A is the slope that defines the model

complexity; higher the value of A, higher will be the complexity involve in the

model. For input data set X = x1, x2, . . . , xn, the kth nearest neighbor of an

input vector xi is xm[i,k] and its associated vector output will be γm[i,k].

δm(u) =
1

N
ΣN
i=1

∣∣xm[i,k] − xi
∣∣2 (3.5)

γm(u) =
1

2N
ΣN
i=1

∣∣Ym[i,k] − Yi
∣∣2 (3.6)
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In order to give stability to this asymptotic value, the gamma statistics should be

determined for increasing number of data points (M). This process, performed

through an algorithmic program to check the convergence of an infinite number

of functions, is called the M-test. This test helps in the selection of the most

suitable data length for model training which ultimately helps in providing the

best goodness of fit in the ANN models [5], [180] and [181].

It is also noted that not in all cases, gamma test provides best results as it fol-

lows an assumption that, non-smoothness in data is only due to the presence of

statistical noise in the data. Whereas, this is not true when the outcome which

is being predicted is of a probabilistic nature. Therefore, a scale invariant noise

σ2(y) is used to standardize the gamma statistics as a deciding factor that how

well an output could be modelled by a smooth function. This is called Vratio (Eq.

3.7) and its value normally ranges from 0 to 1. The value closer to 0 means the

gamma test could be used as a prediction tool for the best MSE while the value

closer to 1 means that there is a low predictability of a given output.

Vratio =
τ

σ2(y)
, (3.7)

For this research-work gamma test has been used in conjunction with a model iden-

tification technique in a Win-Gamma environment. Model Identification (MI) is

an option in the software that provides a computational facility to make the com-

bination making procedure easy and fast, with the help of advanced algorithms.

In this case, Genetic Algorithm (GA) has been utilized as a model identification

tool that uses the Darwins idea of natural evolution. For this purpose, the values

for population size, mutation rate, crossover rate, gradient fitness, intercept fit-

ness and length fitness have been used as; 100 for original and 10 for transformed

data, 0.01, 0.5, 0.1, 0.8, and 0.1, respectively. The input combinations with a

minimum gamma values, obtained through Gamma-Test are further used for the

development of BFGS neural network models.
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3.3.4 Artificial Neural Networking (ANN)

The idea of ANN is inspired by the biological neuron system which has millions of

neurons that are interconnected with each other. These neurons carry signals to

our brain that acts as a processing unit and gives feedback on upcoming signals.

ANN has a similar network of interconnected nodes that work in a same fashion.

Each node acts as an artificial neuron and carries some input signals [181]. An

arrow denotes a connection from the output of one node to the input of the other.

These connecting links receive the input signals and multiply them with the cor-

responding weights. Signals are then transferred, based upon the type of transfer

function opted for a particular type of ANN model.

A typical ANN model must have a minimum of three layers, including an input

layer, intermediate layer and an output layer. Intermediate layer which is also

called as a hidden layer could be one or more depending upon the structure of

an ANN model [55]. A conceptual framework of ANN with two hidden layers is

shown in Fig 3.6.

Figure 3.6: Framework for ANN with 2 Hidden Layers
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ANN type models could be trained through two types of learning approaches which

are supervised and unsupervised learnings. The unsupervised learning, also known

as self-guided approach, works in the absence of output and is used to find the

buried patterns in the data. On the other hand, supervised learning approach is

used when a specific output/ target is present. Both inputs and outputs are fed

into the network and weights are adjusted to reduce the difference between inputs

and outputs.

Selection of the training algorithm is very important while developing an ANN

type model because each training algorithm has its own specific properties. Back

propagation algorithms are quite popular but are slow as their stable learning

requires small learning rates. However, Levenberg-Marquardt (LM), conjugate

gradient (CG) and quasi Newton have pretty fast processing as they use the stan-

dard optimization techniques [180].

3.3.4.1 BFGS Algorithm

The choice of training algorithm in ANN plays an important role in model training

process as different algorithm works on different principles. The Back Propagation

(BP) algorithms are quite popular and are commonly used for training of feed for-

ward neural networks. However they are quite slow as they require small learning

rates for stable learning. On the other hand, Conjugate Gradient (CG) and BFGS

are fast in processing as they use standard optimization techniques.

BFGS is named against four persons; Broyden, Fletcher, Goldfarb and Shanno,

who discovered it in 1970 and considered to be the most effective Quasi-Newton

Method. Quasi Newton methods are used for the root finding algorithm in k

variables. This method is developed for solving equation f(x) = 0 at only first

iteration as compared to conventionally used Jacobian Matrix comprising difficult

and expensive applications through multiple iterations. It is a type of gradient

descent function which are used for optimization of nonlinear functions without

any constraints. It is superior to other gradient descent functions as it overcomes

the limitation of plain gradient descent by seeking a second derivative of the cost
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function. In BFGS environment, the descent direction is determined by precondi-

tioning the gradient with the help of known curvature information.

3.3.4.2 Model Training

In this study, a feed forward neural network with two hidden layers trained via

Broyden Fletcher Goldfarb Shanno (BFGS) algorithm is used for model develop-

ment process. Normally, one layer is used to represent the functions which are

linearly separable. For complex problems, multi layers are preferred as empiri-

cally, deep learning seem to result in better generalization for a wide variety of

tasks [182]. As the behavior of natural streams is very complex and the mountain-

ous catchments (like Upper Indus Basin) often observes contrasting regimes. For

the better understanding of this complex phenomenon, a MLP neural network is

used with 2-hidden layers. The reason behind using two hidden layers in a neural

network is due to their ability of solving nonlinear problems as reported by [183]

and [184]. Previously the 2-layer BFGS is successfully used to train ANN models

in the hydrological estimation e.g. [78], [181], [109] and [5].

The optimum number of nodes in hidden layers of a multi-layer ANN model may

vary from problem to problem due to the difference in complexity level, number of

inputs and outputs. The less number of nodes may create under-fitting problem

while too many neurons may cause over-fitting and takes more time to train a

model. It is suggested by [185] that the best practice of finding the optimum

number of nodes is to experiment them for the given set of data.

3.3.5 ANN Model Development

After performing the input combination selection on the basis of minimum gamma

value (as explained under heading, Input combination selection through Gamma

Test), the whole data is divided into two sets; training data-set and testing data-

set. The training data-set is employed for model training purpose which is basically

adjustment of weights in a typical ANN model. Whereas, the testing data is a set



Study Area & Methodology 57

of unseen data, which is used to evaluate the performance of models trained using

training data-set.

Different researchers have used different divisions for training and testing data

lengths, such as; [186] used 67% data for training and 37% for testing in ANN

based thunderstorm estimation models, [187] used 80-20% combo for ANN based

rainfall estimation models, [5] developed streamflow estimation models and used

72.72% data for training and 27.27% data for model testing purpose. In the current

research, 70% of the data was used to train models and the rest 30% of the data

was employed for model testing purpose. This division of data length was found

to be the best as this ratio gives the minimum variance in developed models for

both phases.

In this case, feed forward Neural Networks are trained via BFGS and the model

structure is finalized in WinGamma environment that uses the default value of

five (5) nodes in each (1st and 2nd) layer. The number of nodes is altered on a

random basis and the change in coefficient of determination for both the training

and testing models is observed, separately for Original and Transformed data-

sets as shown in table 3.2. The number of hidden layers for BFGS is fixed as 2,

as previous researchers have successfully trained ANN models via 2-layer BFGS

algorithm e.g.; [108] and [78]. The number of trials with different value of nodes

have been performed e.g. increasing nodes in first layer, decreasing nodes in 2nd)

layer and decreasing nodes in both layers.

It should be noted that the best input combinations for original (101100101111111

10001) and transformed (10101110100110111011) data-sets are different, despite of

the fact that all these combinations are made using same tool (Gamma Test) with

same model identification technique (GA). This shows that, both the data-sets

behave differently when considered as inputs for the development of ANN models.

It is clear form Table 3.2, that almost all the models which are trained using

original data gave significantly high values of R2 (>90%). However, when these

models are tested against unseen data (testing data), they dont perform well with

a very less values of R2 (<70%). On the other hand, the models developed using
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transformed data-sets produce stable and satisfactory results in both phases. In

this case, the value of R2 is above 90% in training phase while in testing phase it

ranges 78-90% for most of the models.

Table 3.2: Defining ANN Model Structure through a set of different node-
arrangements for BFGS
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Trial 

No. 

  

No. of 

Nodes

in 1st

hidde n

layer 

  

No. of 

Nodes in

2nd

hidden

layer 

 

 

  Original Data (λ=0)

Target MSE= 0.0012976

MASK

10110010111111110001* 

Transformed Data (λ=0.005) 

Target MSE= 4.3006 × 10−7 

MASK

10101110100110111011 

MSE 

Achieved 

R2 

(Training) 

R2 

(Testing) 

MSE 

Achieved 

(× 10−7) 

R2 

(Training) 

R2 

(Testing) 

1 5 5 0.0012973 97.14 70.20 5.2212 89.5 79.1 

2 6 3 0.0012973 97.14 67.79 6.8693 94.2 78.7 

3 4 6 0.0013688 96.99 18.19 7.2796 94.3 63.1 

4 3 3 0.0021849 95.19 63.15 7.9406 93.2 87.9 

5 2 2 0.0053806 88.39 64.18 1.1050 91.2 90.4 

6 1 1 0.0039756 91.25 73.10 1.3463 89.5 94.1 

7 6 2 0.0012974 97.14 54.79 6.1856 94.7 70.6 

8 8 3 0.0012941 97.15 69.24 4.3006 96.2 55.4 

9 3 8 0.0015192 96.66 56.19 7.1418 94.9 80.4 

*1 means an input is included, 0 means an input is excluded 

The sequence of inputs is : PDeosia, SRDeosia, PRama, SRRama, PHushey, SRHushey, PRattu, SRRattu, 

PAstore, PKachura, QKachura, PSkardu, PGilgit, PBunji, QBunji, PChilas, QShatial, PBasham, QBasham, PTarbela 

 

It should be noted that the best input combinations for original (10110010111111110001) 

and transformed (10101110100110111011) data-sets are different, despite of the fact that 

all these combinations are made using same tool (Gamma Test) with same model 

identification technique (GA). This shows that, both the data-sets behave differently when 

considered as inputs for the development of ANN models. 

It is also clear from Table 3.2 that closer the value of Achieved MSE to the Targeted

MSE, greater will be the value of R2 in training phase. On the basis of R2 values,

the best selection of node arrangement came out to be 1-1 and 2-2 for original and

transformed data-sets. Though, alone R2 could not be used as a model efficiency

parameter in all circumstance, yet in this case it has been considered as an initial

criteria for the selection of nodes in hidden layers.
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The performance of all the developed models is evaluated on the basis of set of

performance indicators as explained the next section.

3.3.6 Performance Indicators

The performance of ANN based streamflow estimation models is assessed using a

set of statistical indices as described below:

1. Coefficient of determination (R2)

It is the measure of variance of an output which is determined by the input/s.

mathematically, it is expressed as Eq. (3.8):

R2 = 1− SSres
SStot

, (3.8)

SSres the sum of squares of residuals between observed and predicted values,

whereas SStot represents the total sum of squares between observed and mean

of observed data. The best value of R2 is when the modelled output exactly

matches to the model inputs, i.e. SSres=0, and R2=1. However, normally

the R2 value more than 0.70 is considered good as it depicts that the observed

and modelled outputs are more than 70% correlated.

2. Nash Sutcliffe Efficiency (NSE)

Similar to (R2), is also used as a model efficiency parameter and is deter-

mined by the mathematical transformation, as presented in Eq. (3.9):

NSE = 1− Σn
i=1(X

i
p −X i

o)

Σn
i=1(X

i
o −Xo)

, (3.9)

X i
p and X i

o are the ith values of predicted and observed data, whereas Xo

represents the mean value of the observed data.

3. Root Mean Square Error

It is the square root of the mean square error between predicted and observed

data. It is mathematically expressed in Eq. (3.10):

RMSE =

√
(Σn

i=1(X
i
p −X i

o)
2

n
, (3.10)
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4. BIAS

BIAS is the measure of difference between the mean values of the predicted

and observed data. Its formula is expressed in Eq. (3.11):

BIAS = Xp −Xo (3.11)

Where, (Xp) and (Xo) represent mean values of predicted data and observed data,

respectively.

3.4 Improving ANN Based Hydrological

Forecasting Through Satellite Derived Snow

Cover Area (SCA)

In this section, the performance of ANN models has been optimized through the

process of data normalization, input combination selection, selection of nodes in

hidden layers and over fitting reduction through Gamma and M-Test. The models

are developed and trained using two layer BFGS algorithm in WinGamma envi-

ronment (see detail of WinGamma application at [178]) for stream-flow estimation

at BeshamQila, utilizing SCA of three sub basins of UIB and their respective dis-

charges as model inputs. Afzal [50] and [188] found that these three sub-basins

namely, Astore, Gilgit and Bunji are mainly snow fed basins. The comparative

assessment of models developed with and without satellite-derived SCA has also

been made with the help of performance indicators to show the importance of

data-fusion.

3.4.1 Dataset

The input variables for output (discharge at BishamQila) are considered as weekly

flow observations (Q) at Astore, Gilgit, Bunji and BishamQila gauging stations

and SCA of Astore, Gilgit and Bunji basins. The details of climate dataset used in

this study is presented in Table 3.3. Streamflow data is collected from WAPDA,
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whereas snow cover areas for these basins have been extracted from MODIS snow

cover products in ArcGIS environment. This snow cover product was previously

used by researchers for extraction of SCA such as; [189], [163] and [46].

3.4.1.1 MODIS Snow Products for SCA

The MODIS/Terra Snow Cover product with specification, 8-Day L3 Global 500m

is used for the measurement of snow cover area over three catchments, as mentioned

above in Fig. 3.3. This data product provides the maximum extent of snow cover

over 8-day period within 10◦ x 10◦ MODIS sinusoidal grid tiles. These tiles are

generated by combining 500 m observations from the data set. A bit flag index

is used to track the eight-day snow/no-snow chronology for each 500 m cell. The

index defines the probability of clear sky or cloudy sky, and takes the snow reading

at least once out of 8 days, when the sky is clear. Thus minimizing the cloud cover

and maximize the snow extent,because a cell will only be labeled as the cloud if it

is covered by clouds for all 8-day period. This limitation is exceptional and could

be neglected.

Effective use of MODIS snow products in climate estimation models is linked to

their ability of estimating the snow cover accurately. Therefore, their accuracy

should be assessed and validated before utilizing them for climate related studies

[25]. However in practice, the MODIS products are validated regularly on a global

scale, not only with available on-field measurements but also with other higher

resolution products. Many studies have reported the accuracy of MOIDS snow

products as more than 90% [190], [191], [192], [193] and [194].

In this case, the data-set of MODIS images in HDF format was downloaded from

the https://earthdata.nasa.gov/ for the period of 2003 to 2010. The images

are then converted into .tiff format, in order to project the downloaded tiles using

WGS 1984 projection system with UTM zone 43N. The respective SCA for each

catchment is extracted by masking the respective delineated catchment map of

each basin in ArcGIS environment. Due to the fact that all other input variables

have the temporal frequency of 7 days (week), the 8-day satellite derived SCA is

https://earthdata.nasa.gov/
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converted into weekly data by simply making a graph of obtained values of SCA

with time. The weekly SCA data is then extracted from the graph and used for

further processing. The variation of snow cover area for the selected catchments

is shown in Fig. 3.7.
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Fig. 3.7 SCA variation over time for Astore, Gilgit and Bunji Catchments 
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Astore Gilgit Bunji

Sr. 

No. 
Station River 

Elevation 

(m.a.s.l.) 
Location 

Data 

sets 

Data Length 

(2003-2010) 

1 Astore Astore 2394 
74°42′E, 

35°32′N 
SCA, Q 368 weeks 

2 Gilgit Gilgit 1460 
74°18′E, 

35°55′N 
SCA, Q 368 weeks 

3 Bunji Indus 1372 
74°36′E, 

35°42′N 
SCA, Q 368 weeks 

4 Bisham Qilla Indus 480 
72°52′E, 

34°55′N 
Q 368 weeks 

Figure 3.7: Time series of SCA for Astore, Gilgit and Bunji Catchments

Table 3.3: Data set used for model development

Sr.

No.

Station River Elevation

(masl)

Location Data

sets

Data Length

(2003-2010)

1 Astore Astore 2394 74◦42’E,

35◦32’N

SCA, Q 368 weeks

2 Gilgit Gilgit 1460 74◦18’E,

35◦55’N

SCA, Q 368 weeks

3 Bunji Indus 1372 74◦36’E,

35◦42’N

SCA, Q 368 weeks

4 Bisham

Qilla

Indus 480 72◦52’E,

34◦55’N

Q 368 weeks
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The whole data is transformed using log normalization (on a scale of 0 to 1) to

get a unit-less data set as presented in Eq. 3.12.

Normalized Xi = (Xi −Xmin)/(Xmax −Xmin) (3.12)

Where;

Xi is the ith value of X.

Xmax is the minimum value of variable X.

Xmin is the maximum value of variable X.

3.4.2 Input Combination and Data Length Selection

In this part of study, the combination selection procedure for input variables is

carried out using a mathematical tool, Gamma Test which is already explained

in detail in section 3.2.3. GT is applied in WinGamma environment and a model

identification tool is used to make number of combinations for a given set of input

variables. Model Identification tool provides help in performing GT through a set

of algorithms for a given set of inputs. The data length for model training has

been optimized using M-test. For this purpose, the gamma value is calculated

for increasing number of inputs and the value for which standard error becomes

stable against unique data points (inputs), is considered as the data length for

model training.

3.4.3 Model Training

In this part of study, the models are trained via two layer BFGS algorithm which

is already explained in Section 3.2.4. Different number of nodes in both the hidden

layers is tried and value of Mean Square Error (MSE) and Correlation Coefficient

(R2) is computed for every set of nodes in training and testing phases, as shown in
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Table 3.4. It is quite clear form the Table 3.4 that there is no significant difference

in the values of MSE and R2 values for different combination of nodes in hidden

layers. However, a minute improvement in the R2 values is noted in testing phase

with same number of nodes in both the hidden layers.

The combination (111111) represents the input variables as: SCAAstore, QAstore,

SCAGilgit, QGilgit, SCABunji, QBunji. “1” means an input is included and “0”

means an input is excluded.

Table 3.4: Selection of nodes in hidden layers on the basis of MSE and R2

Network Combination (111111), with Combination (010101), without

Architecture SCA Target MSE 0.000536 SCA Target MSE 0.001118

Sr.

No

Nodes

in 1st

Layer

Nodes

in 2nd

Layer

MSE

(Train)

Achieved

MSE

(Test)

Achieved

R2

(Train)

%

R2

(Test)

%

MSE

(Train)

Achieved

MSE

(Test)

Achieved

R2

(Train)

%

R2

(Test)

%

1 1 1 0.000612 0.00325 98.9 92.8 0.00104 0.00379 98.1 92.0

2 1 2 0.000534 0.00341 99.0 92.4 0.00101 0.00418 98.1 90.9

3 1 5 0.000526 0.00342 99.0 93.5 0.00108 0.0029 98.0 93.5

4 1 6 0.000533 0.00332 99.0 92.7 0.00108 0.00254 98.9 94.2

5 1 7 0.000535 0.00342 99.0 92.5 0.00109 0.00382 98.1 91.4

6 2 1 0.000532 0.00268 99.0 93.8 0.00101 0.00372 98.1 91.9

7 2 2 0.000531 0.00266 99.0 93.9 0.00099 0.00293 98.2 93.1

8 3 3 0.000534 0.00292 99.0 93.4 0.00109 0.00369 97.9 92.0

9 3 5 0.00053 0.00337 99.5 92.4 0.00092 0.00426 98.3 90.2

10 3 6 0.000525 0.00324 99.0 93.2 0.00108 0.00468 98.0 89.2

11 4 4 0.000529 0.00267 99.0 93.8 0.00078 0.00349 98.5 92.3

12 4 7 0.000531 0.00343 99.0 92.2 0.00109 0.00293 98.0 93.4
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Network Combination (111111), with Combination (010101), without

Architecture SCA Target MSE 0.000536 SCA Target MSE 0.001118

Sr.

No

Nodes

in 1st

Layer

Nodes

in 2nd

Layer

MSE

(Train)

Achieved

MSE

(Test)

Achieved

R2

(Train)

%

R2

(Test)

%

MSE

(Train)

Achieved

MSE

(Test)

Achieved

R2

(Train)

%

R2

(Test)

%

13 5 1 0.000527 0.00271 99.0 93.7 0.00112 0.00319 97.9 92.7

14 5 3 0.000536 0.00265 99.0 93.8 0.00072 0.00311 98.6 93.0

15 5 5 0.000536 0.00282 99.1 93.5 0.00103 0.00457 98.1 90.1

16 5 7 0.000529 0.00305 99.0 93.2 0.00082 0.00395 98.4 90.8

17 6 1 0.000522 0.00339 99.0 92.3 0.00103 0.00419 98.1 90.8

18 6 3 0.00053 0.00281 99.0 93.6 0.00086 0.00284 98.4 93.4

19 6 6 0.000525 0.00276 99.0 93.9 0.00077 0.00339 98.5 92.2

20 7 1 0.000512 0.00347 99.1 92.2 0.00111 0.00411 97.9 90.3

21 7 2 0.000517 0.00289 99.1 93.3 0.00103 0.00275 98.1 93.3

22 7 7 0.000534 0.00305 99.0 92.9 0.00107 0.00299 98.0 93.5

The models are further evaluated with the help of statistical indices including NashSut-

cliffe coefficient (NSE), Variance (VAR) and BIAS.

3.5 Improving ANN based Hydrological

Forecasting through Data Fusion

3.5.1 Dataset

The data-set is also same as presented in Table 3.1, except the Snow Cover Area (SCA)

and discharges of three sub catchments of UIB is added in the data-set (the details and
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data collection for SCA of these 3 catchments is presented earlier in Fig 3.3 and Section

3.2.1).

The integrated data-set used in this study is presented in Table 3.5, as follows;

Table 3.5: Data set used for data fusion and model development

Sr.

No.

River Station Elevation

(masl)

Variables No of

Variables

1 Indus Deosai 4142 P, SR 2

2 Indus Rama 3300 P, SR 2

3 Indus Hushey 2850 P, SR 2

4 Indus Rattu 2745 P, SR 2

5 Astore Astore 2546 P, Q, SCA 3

6 Kachura

Lake

Kachura 2341 P, Q* 2

7 Indus Sakardu 2228 P 1

8 Gilgit Gilgit 1430 P, Q, SCA 3

9 Indus Bunji 1403 P, Q, SCA 3

10 Indus Chilas 1265 P 1

11 Indus Shatial 1040 Q 1

12 Indus Basham

Qila

580 P, Q 2

13 Indus Tarbela 450 P, Q 2

Total 13 4 26

* P = Total Weekly Precipitation, SR= Average Global Solar Radiation,

SCA = satellite derived snow cover area (7 days frequency).
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Sr.

No.

River Station Elevation

(masl)

Variables No of

Variables

Q = Average weekly discharge.

Q* = discharge of sub-catchments for which SCA is calculated

The whole data-set has been scaled between 0 and 1 using the formula presented in Eq.

3.12.

3.5.2 Data Fusion Options

Data fusion of antecedent condition of different climate variables including precipitation,

solar radiation and discharge collected from the stations located in different part of the

UIB, along with the satellite derived SCA of 3 sub basins of UIB, is performed based

upon the following conditions:

1. Type / nature and source of data

2. Feature Selection Methods

3.5.2.1 Type / Nature and Source of Data

Hydrological processes are complex and depends upon multiple climate factors. The

complexity increases when a catchment area has difficult terrain with varying regimes.

In order to capture the response of such catchments, multi-type, multi natured and/or

multi source data is required to know more about the different behavioral phases of

the catchment area. The variety of information from different sources provide a better

picture of catchment, which results in a better correlation to the catchment’s response.

The type of data includes the nature of climate variable, like meteorological (e.g. Pre-

cipitation and Solar radiation), hydrological (Discharge) and cryospheric (Snow cover

Area). The source of data is the source from where the data is collected e.g. on-ground or

satellite derived.The source of data may also be considered different if it is collected from

different satellites, sensors or product. Similarly, the same variable measured on-ground

but from different type of gauges / instruments could be considered as multi-source data.
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However, in this chapter the multi-source data means the multi type of data collected

from both on-ground gauges and satellite products.

3.5.2.2 Feature Selection Methods

The feature selection methods are the set of techniques that can be utilized for the

selection of useful inputs/features from a larger set of inputs [195]. The usefulness of

an input or feature can be defined as the maximum relevancy of that input or feature

while minimizing the redundancy of other candidate inputs [196]. The inputs which

are irrelevant and creating noise in the process of smooth model development should be

excluded.

For a given set of inputs, the variance of a noise on an output is determined through a

mathematical test, called Gamma Test (GT). The GT enables us to calculate the MSE

that is present among the data, prior to model development [197]. The input selection

through gamma test is explained previously under sections 3.3.3. With the help of

GT, only those features (input variables) are selected that contribute to lower the MSE

present between the input variables and output data.

The feature selection methods usually work on the basis of a criterion function that

defines how good a particular set of features is ? With this, a search criteria is used to

decide which set of features is to try next. The search criteria should include all possible

input variables in different combinations which are being tested on the basis of already

defined criterion function. For a number of inputs n, total possible combinations could

be calculated using relation, 2n-1. The manual application of this relation on a larger

set of inputs requires a huge computational effort and time. For example, a complete

search of possible combinations for 26 inputs (as used in this chapter) requires a total of

67108863 tests to be performed. In case of applying GT, for each combination, gamma

value will be calculated and checked that if it is minimum enough to consider that

combination of inputs for model development purpose.

Therefore, instead of finding the gamma value individually for each combination of inputs

(except for input combination made on the basis of type/nature of data), the search

process for the input combinations which have minimum gamma value is facilitated

with the help of advanced feature selection techniques, which are described below.
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3.5.2.3 Full Embedding

Full embedding employs the idea of a selection of inputs selected from all the candidate

inputs [78]. To carry out the full search from the n number of inputs, there are 2n-1

unique subsets or embeddings. Each subset has a unique binary code in form of “0” and

“1” that represents a mask/combination of input variables [199]. For example, if there

are 5 inputs; x1, x2, x3, x4 and x5. A random mask for these inputs 11010 represents

that x1, x2 and x4 are included to compute the desired output, whereas x3 and x5 are

excluded.

Full embedding is a comprehensive research that calculates gamma value for each pos-

sible set of input combination. The values obtained for each set of inputs are then

arranged in an ascending order. A gamma histogram is then plotted in order to rep-

resent the results obtained from the full embedding search, where the range of gamma

values are divided into classes (along x-axis) and the frequency of gamma value for each

class is plotted on y-axis. The input masks, which create higher gamma values lie in

the higher region of gamma value, whereas the masks with low gamma values lie in the

lower region of the gamma value. Now the full embedding search could be used to find

the suitable mask of inputs through following procedure (Durrant’s Method [178]):

A. Define L matrix with (mL × n), where mL is the number of input masks that

belongs to low region of gamma value, whereas the n defines the total number of

inputs.Each row in the matrix represents a unique mask of inputs.

B. Define H matrix with (mH × n), where mH is the number of input masks that

belongs to higher region of gamma value, whereas the n defines the total number

of candidate inputs. Each row in the matrix represents a unique mask of inputs.

C. Count the number of inclusions (1’s) from each column of matrix L.

D. Count the number of exclusions (0’s) from each column of matrix H.

E. With the help of the frequency analysis, we can find the suitable inputs on the

basis of following principle;

“Only those inputs are relevant to the models, which are included in majority of the

embeddings with small gamma values, whereas those inputs are irrelevant, which are

excluded in majority of the embeddings with large gamma values.”



Study Area & Methodology 70

3.5.2.4 Sequential Embedding

Sequential embedding as the name shows, executed sequentially to select inputs among

the all candidate inputs. Similar to the full embedding, it provides an optimal solution for

embedding dimension, except it follows a pre-defined sequence for inclusion or exclusion

of inputs [78].

The procedure is carried out from start to end for a given set X of inputs (x1, x2, x3 . . . xn),

with a total number of points “n”. For each unique mask (or embedding dimension), n

ranging from 1 to some predefined maximum value, a set with n− 1 dimensional delay

vectors could be made.

Mathematically, thesevectorscan be defined as Eq. 3.13;

di = xi, . . . , xi+n−1 (3.13)

The Gamma test is then utilized to measure how smoothly the di could be used to

determine the next point of the time series, which is xi+n. This sequence of increasing

embedding is carried out until the value of n for which the gamma value is the minimum

(closest to 0), is found. The mask of inputs for which, the gamma value is minimum is

considered as the optimal or best embedding dimension for model development.

3.5.2.5 Genetic Algorithm

Genetic algorithm (GA) mimics the biological evolution of the species by survival of the

fittest, as described by Charles Darwin. The algorithm adjusts a population of individual

solutions repeatedly until no further improvement is left.

The heuristic techniques for feature selection requires less time for computation as com-

pared to other optimization (i.e. full embedding search) approaches [95]. Therefore,

GA heuristic technique ismore useful and rapid, especially when the dimension space

is high, as in our case (n = 26). Even some consider it is not feasible to find all the

subsets through the full embedding search when the n > 20, becauseit can take days to

carryout full search for all possible subsets [199]. Although, the heuristic approaches do

not provide an optimal solution, still they are good to provide the solution closer to the

optimal with reduced computation effort and time.
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GA maintains a population “P” of the probable individual solution, which is a ’mask

of inputs’ in this case. A repeated process that mimics the genetic evolution is applied,

which modifies the population P. The P could be defined by Eq. ??, as below:

P (t) = xt1, x
t
2, x

t
2, . . . , x

t
n. (3.14)

The initial population at t=0 is created on random basis. The individual solutions x
(t−1)
i

from P (t− 1) is selected on the basis of probability. The individual solutions (or masks

of inputs) with low gamma value have more probability of being selected for the next

generation. The GA alters P (t) on the basis of mutation, that contains a unary and

crossover genetic operators [201]. The first one is used to modify an individual solution,

whereas the later one is used to create a new solution from the two parent solutions. In

order to maintain a constant population size, the solution that does not perform well is

rejected.

3.5.2.6 Hill Climbing

Similar to GA, Hill Climbing is also a heuristic approach. However, it is not as so-

phisticated as GA with comparatively less parameters involved in it. It only contains

a mutation operator, whereas the GA has many parameters like population size, cross

over probability and mutation probability [201].

Hill climbing starts with a random solution or mask of inputs. Every bit of this mask is

flipped to calculate the gamma value for each combination till we reach the end of the

mask. The process of flipping continues until no further improvement in gamma value

is noted. Gamma test is performed on the total of 15 combinations of inputs which are

made either on the basis of type/nature of data or through feature selection methods.

The Gamma value for all the developed combinations, along with vratio is presented in

the next chapter. For a given set of input combination, the closer the gamma value to

zero the minimum will be the noise of variance on an output.

3.5.3 ANN Model Development

The Gamma value for each set of input combination, as presented in Table 3.6, is selected

as a targeted MSE to train ANN based stream flow estimation models. The ANN models
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are trained via two layered feed forward BFGS algorithm. The reason behind using two

hidden layers in a neural network is due to their ability of solving nonlinear problems as

reported by [183] and [184]. The BFGS algorithm is explained in section 3.3.4.1. The

number of nodes in hidden layers are selected on random basis as it is suggested by [185]

that the best practice of finding the optimum number of nodes is to experiment them

for the given set of data. The architecture of ANN models is explained under Table 3.6.

Table 3.6: ANN model Architecture

Improving ANN based stream-flow forecasting models through Data Fusion 68

ANN Model Development4.7

The Gamma value for each set of input combination, as presented in Table 4.2,

is selected as a targeted MSE to train ANN based streamflow estimation models.

The ANN models are trained via two layered feed forward BFGS algorithm. The

reason behind using two hidden layers in a neural network is due to their ability of

solving nonlinear problems as reported by [118] and [119]. The BFGS algorithm

is explained in Chapter 2 under section (2.3.4). The number of nodes in hidden

layers are selected on random basis as it is suggested by [120] that the best practice

of finding the optimum number of nodes is to experiment them for the given set

of data. The architecture of ANN models is explained under Table 4.3.

Table 4.3: ANN model Architecture

15 combinations as presented in Table 4.2Inputs

Nodes in 1st 554332111layer

Nodes in 2nd 512 1 3 4531Layer

Output Discharge at Tarbela

No of Models = 15 × 9 = 135 models

2 Phases = Training and Testing

Total Models = 135 training models + 135 testing models = 270 models

Each combination of input (Table 4.2) is used to develop ANN based models

using 2 hidden layers with a node arrangement as presented in Table 4.3. The

training models are developed using training data length optimized through M-

Test. The testing models are developed for the rest of the data length to evaluate

the performance of models for the unseen data. Both the training and testing

Each combination of input is used to develop ANN based models using 2 hidden layers

with a node arrangement as presented in Table 3.6. The training models are developed

using training data length optimized through M-Test. The testing models are developed

for the rest of the data length to evaluate the performance of models for the unseen data.

Both the training and testing models are evaluated on the basis of variety of performance

indicators to assess the efficiency of models developed for stream flow estimation at

Tarbela. The performance evaluation indicators used to evaluate the performance of

developed models are defined and explained in Section 3.3.6.



Chapter 4

Results & Discussion

4.1 Background

Various Stream flow estimation models have been developed targeting the objectives of

this research work. The methodology adopted to develop these models is explained in

detail in Chapter 3. This chapter contains the detailed results of all the developed models

including Box-cox transformation results, Gamma Test results, and ANN model results

etc. The procedure of these tests and the detail of performance indicators is explained

in the previous chapter. The sections of this chapter describe the associated results

with corresponding section of the methodology in Chapter 3, which mainly include the

results for ANN models developed through data preprocessing (Section), ANN models

developed with satellite derived SCA, and ANN models developed through different data

fusion techniques. The results of each section is followed by the detailed discussion and

summary.

4.2 ANN Models developed through Data Pre-

processing

This section contains the results targeting the first objective of the research work which

is carried out to improve ANN based streamflow estimation models through data pre-

processing. The section contains results for ANN models developed through original

73
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and transformed datasets, their comparison, a comprehensive discussion followed by the

summary.

4.2.1 Data Transformation Results

The power factor (λ) has been selected on the basis of histogram characteristics, co-

variance and Normal Probability Plots, as shown in Table 4.1 and Fig. 4.1 to 4.5. The

graphical representation of data in from of histogram shows center, spread, skewness

and outliers present in the data. It also helps to identify the data that from which

population distribution it belongs to.

In addition to histograms, normal probability plots are also used to asses graphically

that whether or not the data comprising of precipitation, solar radiation and discharges

at various stations (detail in Table 3.1) is normally distributed. These plots also provide

a measure of how much the data is close to follow the normal distribution with the

help of correlation coefficient, R2. It is clear from table 4.1 that when the data is

transformed using negative values of λ as -1 and -2, the respective values of standard

deviation (1037399 and 101.31), skewness (109.79 and 6.23) and covariance (10.2 and

3.30) are very high as compared to other tried values of λ.

Table 4.1: Different values of λ against Co-variance and Histogram character-
istics

Sr.

No

Lambda (λ) Mean Standard

Deviation

CovarianceSkewness

1 -2 101201 1037339 10.2 109.79

2 -1 (inverse) 30.63 101.31 3.30 6.23

3 0.005 0.9870 0.0072 0.0073 0.41

4 0.01 0.9742 0.0143 0.0148 0.42

5 0.05 0.8795 0.0653 0.0742 0.48

6 0.1 0.7779 0.1161 0.149 0.54
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Sr.

No

Lambda (λ) Mean Standard

Deviation

CovarianceSkewness

7 0.2 0.6142 0.1872 0.30 0.70

8 0.5 (sq. root) 0.3558 0.2738 0.77 0.96

9 0.8 0.2429 0.2799 1.15 1.20

10 3 (Cube) 0.0760 0.1761 2.31 2.95

11 2 (square) 0.1091 0.2125 1.94 2.16

12 1 (original) 0.1944 0.2672 1.37 1.42

13 0 (log) -2.621 1.464 -.055 0.41

The graphical representation for λ= -1, in form of histogram and probability plot is

shown in Fig. 4.1 (a) and Fig. 4.2 (b), respectively. The histogram shows that the data

is concentrated on one side with mean value = 30.63, and positively skewed as the right

tail is longer than the left tail. On the other hand, the normal probability plot does not

show any linear relationship with a very low value of R2 = 0.0902, which means that

the data transformed using -1 as a power factor, is not normally distributed.

(a)
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FIGURE 2.4 (b): Transformed Data Representation for λ = -1 (Probability Plot)

 

For original data (λ=1), the values of R2, Standard Deviation, co-variance and skewness 

are 70%, 0.267, 1.37, 1.42, respectively. The departure of the data points from the linear 

line of the normal probability plot indicates the departure from the normality. In the case 

of original data, the value of correlation coefficient is 70%, which is far better than the 

negative values of λ. Therefore, the negative values of λ seem unsuitable for this data-

type as the transformed data comes out even more abnormal than the original data itself.

  

FIGURE 2.5 (a): Original Data Representation for λ=1 (Histogram)  

(b)(b)

Figure 4.1: Transformed Data Analysis for λ= -1.
(a) Histogram, (b) Normal Probability Plot

For original data (λ=1), the values of R2, Standard Deviation, co-variance and skewness

are 70%, 0.267, 1.37, 1.42, respectively. The departure of the data points from the linear

line of the normal probability plot indicates the departure from the normality. In the

case of original data, the value of correlation coefficient is 70%, which is far better than

the negative values of λ. Therefore, the negative values of λ seem unsuitable unsuitable

for this data-type as the transformed data comes out even more abnormal than the

original data itself.

(a)
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  FIGURE 2.5 (b): Original Data Representation for λ=1 (Probability Plot)

However, the other values of λ, such as 0.1, 0.01 and 0.005 showed better fitness to the
straight line of normal probability plots with significant high values of R2 > 88% as 

compared to the original data set. The normal probability plots for these power factors are 

shown in Figs. 2.6 (a), 2.7 (b) and 2.8 (a), respectively. The same is reflected in the 

histograms for these values of λ, which are shown in Fig. 2.6(a), 2.7(a) and 2.8(a). These 

histograms are bell shaped and almost seems graphically symmetrical about the mean 

values. This indicates that the transformed data using these power factors, approximately 

follows normal distribution. It is also noted that the change of λ values from 0.01 to less 

than 0.005 doesn’t have any significant impact on R2 value of probability plot.  

 

(b)
(b)

Figure 4.2: Original Data Analysis for λ=1.
(a) Histogram, (b) Normal Probability Plot

However, the other values of λ, such as 0.1, 0.01 and 0.005 showed better fitness to

the straight line of normal probability plots with significant high values of R2 > 88%

as compared to the original data set. The normal probability plots for these power

factors are shown in Figs. 4.3(b), 4.4(b) and 4.5(b), respectively. The same is reflected

in the histograms for these values of λ, which are shown in Fig. 4.3(a), 4.4(a) and

4.5(a). These histograms are bell shaped and almost seems graphically symmetrical

about the mean values. This indicates that the transformed data using these power

factors, approximately follows normal distribution. It is also noted that the change of λ

values from 0.01 to less than 0.005 doesn’t have any significant impact on R2 value of

probability plot.

(a)
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FIGURE 2.6 (a): Transformed Data Representation for λ = 0.1 Histogram 

 

  

FIGURE 2.6 (b): Transformed Data Representation for λ = 0.1 (Probability 
Plot)

 

 

(b)

Figure 4.3: Transformed Data Analysis for λ=0.1.
(a) Histogram, (b) Normal Probability Plot

(a)

 

FIGURE 2.7 (a): Transformed Data Representation for λ = 0.01 (Histogram) 

 

 

  
(b) Probability Plot

FIGURE 2.7 (b): Transformed Data Representation for λ = 0.01 (Probability 
Plot)

 

(b)

Figure 4.4: Transformed Data Analysis for λ=0.01.
(a) Histogram, (b) Normal Probability Plot
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(a)
 

FIGURE 2.8 (a): Transformed Data Representation for λ = 0.005 (Histogram) 

 

   

 

FIGURE 2.8 (b): Transformed Data Representation for λ = 0.005 (Probability

Plot)

When  the  value  of  λ  is  increased  to  2  (square  root  transformation)  and  3 (cube  

root 

transformation),  a  decreasing  trend  in  Standard  Deviation  is  observed.  But,  increased

skewness for λ =2 and 3, shows that the transformed data becomes more asymmetrical 

and 

even shifted away from the normal distribution curve. However, 1 > λ > 0, makes the 

data

more normal with reduced skewness and increased R2 values in the probability plots.  

(b)

Figure 4.5: Transformed Data Analysis for λ=0.005.
(a) Histogram, (b) Normal Probability Plot

When the value of λ is increased to 2 (square root transformation) and 3 (cube root

transformation), a decreasing trend in Standard Deviation is observed. But, increased

skewness for λ =2 and 3, shows that the transformed data becomes more asymmetrical

and even shifted away from the normal distribution curve. However, 1 > λ > 0, makes

the data more normal with reduced skewness and increased R2 values in the probability

plots.



Results & Discussion 80

For λ=0, the formula for Box-Cox transformation returns the data towards log trans-

formation. The result of log transformations are shown in Fig. 4.6 (a) and 4.6 (b). The

log transformation transforms the data towards normality better than square, cube or

inverse transformation with 89% correlation coefficient in probability plot. The reason

of log transformation performing well than them is because the value of λ=0 lies within

the range of confidence interval determined for the data for a given confidence value.

However, even better histogram characteristics are obtained with the other values of

power factor, such as 0.001 and 0.005.

(a)

85 

 

 

FIGURE 4.6 (b): Transformed Data Representation for λ = 0, Log transformation 

(Probability Plot) 

With the above discussion, it is concluded that the value of λ = 0.01 and 0.005 could be 

used confidently as these power factors are making the data more symmetrical about the 

respective mean values of the transformed data-set. In this case, λ = 0.005 is chosen to 

transform the data with minimum covariance (0.0073) and maximum value of R2 (89.85).  

4.1.2 Gamma Test Results 

 Genetic algorithm has been used as a model identification tool for making variety of 

combination of inputs and obtained gamma values along with Vratio values that are 

presented graphically for original (Fig. 4.7 (a)) and transformed data-sets (Fig. 4.7 (b)). 

The result in x-axis denote the population size which is a crucial parameter in finding the 

optimum solution for GA.  

(b)

Figure 4.6: Transformed Data Analysis for λ = 0, Log transformation
(a) (Histogram) (b) (Normal Probability Plot)
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With the above discussion, it is concluded that the value of λ = 0.01 and 0.005 could

be used confidently as these power factors are making the data more symmetrical about

the respective mean values of the transformed data-set. In this case, λ = 0.005 is chosen

to transform the data with minimum covariance (0.0073) and maximum value of R2

(89.85).

4.2.2 Gamma Test Results

Genetic algorithm has been used as a model identification tool for making variety of

combination of inputs and obtained gamma values along with Vratio values that are

presented graphically for original (Fig. 4.7(a)) and transformed data-sets (Fig. 4.7(b)).

The result in x-axis denote the population size which is a crucial parameter in finding

the optimum solution for GA.

2.5.2 Gamma Test Results 

 Genetic algorithm has been used as a model identification tool for making variety of 

combination of inputs and obtained gamma values along with Vratio values that are 

presented graphically for original (Fig. 2.5(a)) and transformed data-sets (Fig. 2.5(b)).  

 

(a): Spread of Gamma values and V-ratio for Original Data  

 

  

 

       (b): Spread of Gamma values and V-ratio for Transformed Data

It can be seen that population sizes for GA in original data is 100 while in transformed

data it is selected as 10. This is due to the reason that for transformed data, the data has

been  scaled  down  and  it  behaves  differently  than  the  original  one.  This  has  also  been
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Fig 2.9(b): Spread of Gamma values and V-ratio for Transformed Data

It can be seen that population sizes for GA in original data is 100 while in 
transformed

data it is selected as 10. This is due to the reason that for transformed data, the data 

has 

been  scaled  down  and  it  behaves  differently  than  the  original  one.  This  has  also  

been 

reflected  in  previous  research [92] that  population  size  depends  upon  number  of  

factors 

that  may  include  problem  size,  problem  difficulty  and or  empirical  evidence  

of

improvement for a specific population size.

Although,  selecting  population  size  100,  for  transformed  data-set,  results  in  very  

less 

gamma  value  but  the  developed  models  seem  unable  to  achieve  this  unrealistically  

less

targeted MSE (3.2 × 10-9). Contrarily for population size 10, the achieved MSE values are 

quite closer to the targeted MSE values as shown in Table 2.3. The final gamma values that 

have been used as targeted MSE for training of ANN models are 0.0012976 and 4.3006 × 

10-7, respectively for original and transformed data. It should be noted that the MSE for 

transformed data-set is far low than the MSE for the original data. The less value, in case 

of transformed data, is due to scaling of data between 0 and 1 and might be the result of 

reduced heteroscedasticity in data through Box-Cox transformation.  
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Figure 4.7: Spread of Gamma values and V-ratio.
(a) Original Data, (b) Transformed Data
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It can be seen that population sizes for GA in original data is 100 while in transformed

data it is selected as 10. This is due to the reason that for transformed data, the data

has been scaled down and it behaves differently than the original one. This has also

been reflected in previous research [202] that population size depends upon number of

factors that may include problem size, problem difficulty and or empirical evidence of

improvement for a specific population size.

Although, selecting population size 100, for transformed data-set, results in very less

gamma value but the developed models seem unable to achieve this unrealistically less

targeted MSE (3.2× 10−9). Contrarily for population size 10, the achieved MSE values

are quite closer to the targeted MSE values as shown in Table 4.1. The final gamma

values that have been used as targeted MSE for training of ANN models are 0.0012976

and 4.3006×10−7, respectively for original and transformed data. It should be noted that

the MSE for transformed data-set is far low than the MSE for the original data. The less

value, in case of transformed data, is due to scaling of data between 0 and 1 and might

be the result of reduced heteroscedasticity in data through Box-Cox transformation.

It is already discussed in Chapter 3, under section 3.2.3.2 that the Vratio is used to

standardize the gamma value as the GT bears the assumption that the noise present in

data is only due to the statistical noise. It is clear from the Fig. 4.7(a) and 4.7(b) that

for the targeted values of MSE for both original and transformed data-sets, the value of

Vratio is also close to zero. Therefore, it could be stated that in this case, the outcome

which is being predicted is not of probabilistic nature and the gamma value is the true

reflection of noise present in the data and could be used confidently as the targeted MSE

to train models.

4.2.3 ANN Model Results

Initially only R2 is used to define the architecture of ANN models, but because there is no

significant difference in the R2 values of different tried architectures of ANN. Therefore,

other statistical parameters including NSE, RMSE, VARIANCE and BIAS have also

been calculated for all set of ANN model structures which are presented in Fig. 4.8,

in order to verify the initial selection and to choose the most appropriate model(s) for

predicting the discharge at Tarbela. It is mentioned earlier that node arrangement 1-1

and 2-2 gave the highest R2 values, respectively for original and transformed data-sets.
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The same selection has been justified with the help of NSE, RMSE, Variance and BIAS

values which are presented in Fig. 4.8. It is clear from the Fig. 4.8 that approximately all

errors have been reduced for the models developed through transformed data specifically

in testing phase, as compared to the original data-set but the difference in values of R2

is more significant. In case of original data, the developed models have performed well

only in training phase; with NSE and R2 > 95% and low values of RMSE (< 400) in

most of the cases. The low values of NSE and R2 and high values RMSE and BIAS in

testing phase clearly depict the inefficiency of models developed through original data.

On the other hand, the models, developed through transformed data, not only resulted

in high values of NSE (more than 89%) and R2 (more than 90%) in training phase but

also resulted in reasonably high values of NSE (more than 97%) and R2 (more than

94%) in testing phase for most of the cases.
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 Fig. 4.8 Comparison of ANN models for Original and Transformed data(b)

Figure 4.8: Comparison of ANN models for Original and Transformed data



Results & Discussion 84

4.2.4 Discussion

In case of original data, the models with node arrangement 1-1 and 2-2 performs bet-

ter with R2> 70% in testing phase. However, all the other models, developed through

original data are unable to perform well with weak correlation and reduced model effi-

ciency (Fig.4.8) specifically in the testing phase with high values of RMSE, BIAS and

Variance. In training phase these combination of nodes (1-1 and 2-2) did not perform

as well as compared to the combination of more nodes in both the layers (5-5, 6-3, 4-6,

6-2 and 6-3) with relatively less values of R2, NSE and high values of BIAS, VAR and

RMSE. Whereas, for transformed data, the arrangement 1-1, 2-2 and 3-3 could be used

with high values of correlation coefficient in both phases which are 89.5 and 94.5, 91.2

and 90.4, 93.2 and 87.9, respectively. However, the model with node arrangement 2-2

is considered as the best model because the corresponding statistical parameters show

that it can be used for the prediction of discharge at Tarbela with a reasonable accuracy.

The value of R2 for network with node combination 8-3 in testing phase is low because

of the reason that this particular architecture of ANN containing this combination of

nodes in both layers, unable to perform well in testing phase. This raises a question why

some networks of ANN performs well and some not? Well, the best practice to find the

appropriate network is to experiment them, as did in this case. However, one particular

reason behind this low value of R2 is that the network has more neurons than it should

be, as it is clear from Fig. 4.8 that the same model is over-fitting (not performing well

in testing phase, the BIAS value for the same model is also very high which are shown

in Fig. 4.8. The results of table 4.1 and Fig. 4.8 clearly shows that the less number of

nodes perform well in ANN modeling process for our data.

Although a single model from original data with a node combination (1-1) perform

reasonably well but the overall trend of performance values for models developed through

original and transformed data-set suggests that the transformed data-set provided a

better initial state for model development process. The negative BIAS error for most of

the models shows that the models are predicting less than the actual values and these

could be used efficiently for water management purposes as it adds a factor of safety for

the water storage and regulation. However, these models are not recommended to use

for flood estimation purposes without correcting the BIAS error. The best models for

original data set with node combination (1-1) is presented graphically in Figs. 4.9(a),
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4.9(b). The value of R2 in training phase is more than 90% which depicts that the

predicted output is quite well correlated with the observed output. However, in testing

phase the value of R2 is 70% which is in acceptable range but not comparable to the

R2 value in the testing phase. The goodness of fit in both phases must be good for a

reliable and efficient estimation model, which is lacking in the models developed with

the original data-set.

 

In case of original data, the models with node arrangement 1-1 and 2-2 performs better 

with R2 > 70%.  However, all the other models, developed through original data are unable 

to perform well with weak correlation and reduced model efficiency (table 2.4). Whereas, 

for transformed data, the arrangement 1-1, 2-2 and 3-3 could be used with high values of 

correlation coefficient in both phases which are 89.5 and 94.5, 91.2 and 90.4, 93.2 and 

87.9, respectively. However, the model with node arrangement 2-2 is considered as the 

best model because the corresponding statistical parameters show that it can be used for 

the prediction of discharge at Tarbela with a reasonable accuracy. The best models for both 

original (1-1) and transformed data-sets (2-2) are presented graphically in Figs. 2.6(a), 

2.6(b) and Figs. 2.7(a), 2.7(b), and time-series plots for testing models of the same are 

shown in Fig. 2.8(a) and Fig. 2.8(b). The negative BIAS error for most of the models shows 

that the models are predicting less than the actual values and could be used only for water 

management purpose and not for flood estimation.   

 

(a)
Fig. 2.6 (a) Model 1-1 for Original Data (Training) 

 

Fig. 2.6(b) Model 1-1 for Original Data (Testing) 

 

Fig. 2.7(a) Model 2-2 for Transformed Data (Training) 

(b)

Figure 4.9: Model 1-1 for Original Data.
(a) Training, (b) Testing
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The best models for transformed data-sets (2-2) are presented graphically in Figs. 4.10

(a), 4.10 (b). It is clear from the figures that the value of R2 is more than 90% in

training as well as in testing phase. This clearly depicts that how well the predicted

output is correlated with the observed output in both phases. The same trend has been

observed in most of the models developed through the transformed data-set, showing

the reliability and efficiency of discharge estimation models. This clearly evidenced the

importance of data transformation in hydrological data-driven model development.

Fig. 2.6 (a) Model 1-1 for Original Data (Training) 

 

Fig. 2.6(b) Model 1-1 for Original Data (Testing) 

 

Fig. 2.7(a) Model 2-2 for Transformed Data (Training) 
(a)

 

Fig. 2.8(b) Model 2-2 for Transformed Data (Testing) 

 

Fig. 2.8(a) Time-series plot for actual and predicted data (Original Data) 

(b)

Figure 4.10: Model 2-2 for Transformed Data.
(a) Training, (b) Testing
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The time series plots for models presented respectively in Figs. 4.9 (best model developed

through original data-set) and 4.10 (best model developed through transformed data-

set) are presented in Figs. 4.11 (a) and 4.11 (b). The time series plots show the real

time variation of predicted dischargewith respect to the actual discharge.

94 

 

Fig. 4.10 (b) Model 2-2 for Transformed Data (Testing) 

The time series plots for models presented respectively in Figs. 4.9 (best model developed 

through original data-set) and 4.10 (best model developed through transformed data-set) 

are presented in Figs. 4.11 (a) and 4.11 (b). The time series plots show the real time 

variation of predicted discharge with respect to the actual discharge.  
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Figure 4.11: Time-series plot for models developed using original & trans-
formed data-set

(a) Original Data, (b) Transformed Data
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The time series plot for the transformed data set (Fig. 4.11 (b)) showed less variation

of predicted discharge to actual discharge as compared to the time series plot developed

for original data-set.

The ANN models developed through original and transformed hydrological data-sets,

are both compared on the basis of variety of statistical indices. The results clearly

indicate that the models developed with preprocessed data performed better with high

values of correlation coefficient and less value of other statistical errors.

The comparison of models indicate that the processed hydrological data through a lin-

ear transformation (The Box-Cox transformation) provides a better initial state to the

training of ANN models and could be used to improve the performance of ANN models.

However, this transformation doesnt always provide optimal solution of correcting data

and in some cases, the complex transformations are unavoidable [203]. The models de-

veloped through original data, although performed well in the training phase but failed

in producing better results in the testing phase with low values of correlation coefficient

and high values of other statistical errors.

4.2.5 Summary

In this research work, the efficiency of ANN based hydrological forecasting models have

been improved through two types of data preprocessing options; data scaling through

Box-cox transformation, and input selection through the Gamma test. For this pur-

pose, a case study of UIB has been considered and streamflow forecasting models are

developed for Tarbela Reservoir. Antecedent upland catchment information including

precipitation, solar radiation and discharge has been considered as input variables.

The original data-set has been transformed using the Box-cox transformation after find-

ing a suitable power factor through histogram statistics and probability plots. For given

data-set, the value of the power factor (λ) with least skewness, standard deviation and

maximum R2 comes out to be 0.005. The input screening procedure is carried out with

the help of a mathematical tool (Gamma-Test) and facilitated by a model identification

tool, Genetic Algorithm (GA).

The best input combination for original and transformed data-sets are 10110010111

111110001 and 10101110100110111011 with minimum Gamma values of 0.0012976 and
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4.3006×10−7, respectively. These values are considered as targeted MSE values to train

ANN models, via two layer BFGS algorithm. Multiple node arrangements have been

tried for both the hidden layers and the best models for the original and transformed

data-sets, which came out “1-1” and “2-2” respectively. The evaluation of models is

made on the basis of set of performance indicators including NSE, R2, RMSE, Variance

and BIAS.

The results indicate that data preprocessing provides an opportunity to enhance the

model efficiency through data transformation and input variable selection. Even simple

data transformation techniques can improve the initial data state to the data driven

models. This is achieved through reducing the statistical noise in the data and making

it more normal (symmetrical around mean). Despite of the fact that ANN dont have

any preliminary requirement of data normality to perform well, still there performance

is improved. Especially, the models developed with preprocessing are more generalized

as compared to the models developed with the original data-set. i.e. their capacity of

performing well for the unseen data (testing data) is significantly improved.

4.3 ANN Models developed using Satellite

Derived Snow Cover Area

This section covers the results targeting the second objective of the research work which

is achieved to improve ANN based streamflow estimation models through satellite de-

rived snow cover area for a mountainous catchment. The section contains results for

ANN models developed using two types of dataset comprising of;on-ground flow obser-

vations and flow observations with SCA, their comparison, a comprehensive discussion

followed by the summary.

4.3.1 Gamma Test Results

The Gamma test is performed on a set of six (6) input variables (SCA of Astore, Gilgit

and Bunji and Q of Astore, Gilgit and Bunji) for output which is Q at BeshamQila. A

total of 63 realistic combinations are made using a model identification tool and Gamma
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value is computed for each, as shown in Fig (4.12), which is later on considered as the

targeted MSE value for model training process (Table 4.2).

3.5 Results & Discussion 

3.5.1 Gamma Test Results 

The Gamma test is performed on a set of six (6) input variables (SCA of Astore, Gilgit and 

Bunji and Q of Astore, Gilgit and Bunji) for output which is Q at Besham Qila. A total of 

63 realistic combinations are made using a model identification tool and Gamma value is 

computed for each, as shown in Fig (3.3), which is later on considered as the targeted MSE 

value for model training process (Table 3.2).  

 

FIGURE 3.3: Gamma Values vs. input combinations/ masks 

It is found that input mask (111111) give minimum gamma value/ targeted MSE that is 

0.000536. “1” means that a particular input is included and “0” means a particular input is 

excluded. All 1’s in this combination showed that gamma value is minimum with all inputs 

included. So, the combination containing all input variables with minimum targeted MSE 

is further used for model development process. The combination that includes only on-

ground observations (010101) is also used to develop models in order to compare the 

performance of estimation models without considering the satellite-derived SCA as a 

possible predictor. In order to find the suitable data length for model training, which 

optimize the model performance in terms of goodness of fit, the M-test has been performed 

Figure 4.12: Variation in Gamma Value with different masks of input variables

It is found that input mask 111111 (SCA of Astore, Q of Astore, SCA of Gilgit, Q of

Gilgit, SCA of Bunji, Q of Bunji) give minimum gamma value / targeted MSE that

is 0.000536. “1” means that a particular input is included and “0” means a particular

input is excluded. All 1’s in this combination showed that gamma value is minimum with

all inputs included. So, the combination containing all input variables with minimum

targeted MSE is further used for model development process.

The combination that includes only on-ground observations 010101 (Q of Astore, Gilgit

and Bunji) is also used to develop models in order to compare the performance of

estimation models without considering the satellite-derived SCA as a possible predictor.

In order to find the suitable data length for model training, which optimize the model

performance in terms of goodness of fit, the M-test has been performed on increasing

number of inputs for both the input combinations 010101 Fig (4.13) and 111111 Fig

(4.14).

It is clear from the Fig (4.13) & Fig (4.14) that the standard error line becomes almost

stable after 165 unique data points. So, the data length for model training is considered

as 45% (165 weeks) and the testing/ validation as 55% (203 weeks).
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on increasing number of inputs for both the input combinations 010101 Fig (3.4) and 

111111 Fig (3.5). 

 

FIGURE 3.4: M-test for combination 010101 

 

FIGURE 3.5: M-test for combination 111111 

It is clear from the Fig (3.4) & Fig (3.5) that the standard error line becomes almost stable 

after 165 unique data points. So, the data length for model training is considered as 45% 

(165 weeks) and the testing/ validation as 55% (203 weeks).   

Figure 4.13: Stabilizing the Gamma Value with increasing data points for
combination 010101

order to find the suitable data length for model training, which optimize the model 

performance in terms of goodness of fit, the M-test has been performed on increasing 

number of inputs for both the input combinations 010101 Fig (3.4) and 111111 Fig (3.5). 

 

FIGURE 3.4: M-test for combination 010101 

 

FIGURE 3.5: M-test for combination 111111 

It is clear from the Fig (3.4) & Fig (3.5) that the standard error line becomes almost stable 

after 165 unique data points. So, the data length for model training is considered as 45% 

Figure 4.14: Stabilizing the Gamma Value with increasing data points for
combination 111111

4.3.2 ANN Model Results

The number of hidden layers for all ANN models are fixed as two (2) and a variety

of combinations of nodes in these layers are tried (Table 3.4). Since, the change in
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number of nodes in each layer doesn’t have any significant impact upon the MSE and

the correlation coefficient values for the developed models, therefore, the models are

developed for all the selected combination of nodes as presented in Table 4.2, tested

and evaluated using performance indicators; NSE, RMSE and VAR. Each model with

a specific network architecture is trained against the output discharge at BeshamQila

for both the combinations, the one (111111) obtained through the Gamma-test and the

other (010101) comprised of only gauge-discharges Fig. (4.15).

101 

 

 

Fig. 4.15. ANN Modeling Results for both set of input-combinations 

 

4.3.3 Discussion 

It is clear from the Fig. 4.15 that the models developed with integrated data-set (111111), 

performed better with the average values of NSE = 99.5/97.5 (training/testing), BIAS = -

0.01/-6.6, RMSE = 251.4/532.3 and VAR = 63218.0/286917.1, as compared to the models 

developed without SCA in the input variables (010101) with average values of NSE = 

99.1/97.1 (training/testing), BIAS = 14.6/-26.1, RMSE = 327.6/531.4 and VAR = 

Figure 4.15: ANN Modeling Results for both set of input-combinations
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4.3.3 Discussion

It is clear from the Fig. 4.15 that the models developed with integrated data-set

(111111), performed better with the average values of NSE = 99.5/97.5 (training/test-

ing), BIAS = -0.01/-6.6, RMSE = 251.4/532.3 and VAR = 63218.0/286917.1, as com-

pared to the models developed without SCA in the input variables (010101) with average

values of NSE = 99.1/97.1 (training/testing), BIAS = 14.6/-26.1, RMSE = 327.6/531.4

and VAR = 106390.6/284363.4.

Again, the changing number of nodes in the hidden layers doesnt produce any signifi-

cant difference in the performance of models with almost similar values of performance

indicators, especially for NSE and RMSE in the case of training and testing of models.

However, the moderate difference in values for BIAS and VAR is observed during both

the training and testing phases of the developed models. BIAS is a systematic error

that represents the difference in values of predicted and actual mean. Positive BIAS

means that the mean of predicted discharge is more than the mean of actual or observed

discharge.

In the training phase of models developed with 010101 (input combination), the value

of BIAS in most of the cases is positive, depicting that the trained models are over-

predicting; whereas the converse trend of negative BIAS has been observed in most of

the cases of testing/validation phase, showing that the models are predicting less than

the actual values.

To make the ANN models predict more or less, often depends upon the careful selection

of network-architecture as the complex architecture tends to predict more due to over-

fitting, while the lighter network tends to predict less due to under-fitting. This is why,

this study considered a number of node-combination options while training ANN models

through BFGS algorithm to find the best possible option with minimum uncertainty.

For combination 111111, the minimum value of BIAS in the training phase is 0.6 for

Model No.1 with a node combination of 1-1. But the same model showed high values

of BIAS (-36.0) and RMSE (695.3) in the testing phase. The values of correlation

coefficient (R2) for this node combination is 0.99 and 0.93 as shown in Fig. 4.16(a) &

(b) respectively.
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 To make the ANN models predict more or less, often depends upon the careful selection 

of network-architecture as the complex architecture tends to predict more due to over-

fitting, while the lighter network tends to predict less due to under-fitting. This is why, this 

study considered a number of node-combination options while training ANN models 

through BFGS algorithm to find the best possible option with minimum uncertainty.  

For combination 111111, the minimum value of BIAS in the training phase is 0.6 for Model 

No.1 with a node combination of 1-1.  But the same model showed high values of BIAS (-

36.0) and RMSE (695.3) in the testing phase. The values of correlation coefficient (R2) for 

this node combination is 0.99 and 0.93 as shown in Fig. 3.6 (a) & (b) respectively. 

 

FIGURE 3.6 (a): Model No.1 with node combination 1-1 (Training Model) 

 

(a)

 

FIGURE 3.6 (b): Model No.1 with node combination 1-1 (Testing Model) 

The model No. 7 with a node combination of 2-2 performed well with low values of BIAS 

Training/Testing = (1.6/15), RMSE (252.4/486.0) and VAR (63709.6/236002.2). The 

value for R2 in training and testing phases for this node combination are 0.99 and 0.94 

respectively for training and testing phases, as shown in Fig 3.7 (a) & (b). 

 

FIGURE 3.7 (a): Model No. 7 with node combination 2-2 (Training Model) 

(b)

Figure 4.16: Model No. 1 (Nodes: 1-1) developed with input combination
111111

(a) Training Phase, (b) Testing Phase

The model No. 7 with a node combination of 2-2 performed well with low values of

BIAS Training/Testing = (1.6/15), RMSE (252.4/486.0) and VAR (63709.6/236002.2).

The value for R2 in training and testing phases for this node combination are 0.99 and

0.94 respectively for training and testing phases, as shown in Fig 4.17 (a) & (b).
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FIGURE 3.6 (b): Model No.1 with node combination 1-1 (Testing Model) 

The model No. 7 with a node combination of 2-2 performed well with low values of BIAS 

Training/Testing = (1.6/15), RMSE (252.4/486.0) and VAR (63709.6/236002.2). The 

value for R2 in training and testing phases for this node combination are 0.99 and 0.94 

respectively for training and testing phases, as shown in Fig 3.7 (a) & (b). 

 

FIGURE 3.7 (a): Model No. 7 with node combination 2-2 (Training Model) 

(a)

 

FIGURE 3.7 (b): Model No. 7 with node combination 2-2 (Testing Model) 

The model No. 11 with a node combination 4-4 outperformed with low values of BIAS 

Training/Testing = (-0.9/9.9), RMSE (251.1/480.9) and VAR (63062.9/231196.7), as 

compared to other models. The Fig 3.8 (a) & (b) shows the training and testing models 

developed with a node combination of 4-4. The values for R2 in training and testing phases 

are 0.99 and 0.96, respectively.  

 

FIGURE 3.8 (b): Model No. 11 with node combination 4-4 (Training Model)  

(b)

Figure 4.17: Model No. 7 (Nodes: 2-2) developed with input combination
010101

(a) Training Phase, (b) Testing Phase

The model No. 11 with a node combination 4-4 outperformed with low values of BIAS

Training/Testing = (-0.9/9.9), RMSE (251.1/480.9) and VAR (63062.9/231196.7), as
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compared to other models.The Fig 4.18 (a) & (b) shows the training and testing models

developed with a node combination of 4-4. The values for R2 in training and testing

phases are 0.99 and 0.96, respectively.

 

FIGURE 3.7 (b): Model No. 7 with node combination 2-2 (Testing Model) 

The model No. 11 with a node combination 4-4 outperformed with low values of BIAS 

Training/Testing = (-0.9/9.9), RMSE (251.1/480.9) and VAR (63062.9/231196.7), as 

compared to other models. The Fig 3.8 (a) & (b) shows the training and testing models 

developed with a node combination of 4-4. The values for R2 in training and testing phases 

are 0.99 and 0.96, respectively.  

 

FIGURE 3.8 (b): Model No. 11 with node combination 4-4 (Training Model)  

(a)

 

FIGURE 3.8 (b): Model No. 11 with node combination 4-4 (Testing Model)  

 

Although, some of the models developed without SCA also performed reasonably well, 

e.g. the model No. 21 with a node combination of 7-2 and the model No. 19 with a node 

combination of 6-6 with BIAS (9.7/-10.9) & (2.0/3.2), RMSE (236.0/ 485.9) & 

(266.9/520.9) and VAR (55593.5/235948.3) & (71221.6/271285.9). The training and 

testing models for these models are presented in Fig. 3.9 (a) & (b) and Fig. 3.10 (a) & (b), 

respectively. 

(b)

Figure 4.18: Model No. 11 (Nodes: 4-4) developed for input combination
111111

(a) Training Phase, (b) Testing Phase
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Although, some of the models developed without SCA also performed reasonably well,

e.g. the model No. 21 with a node combination of 7-2 and the model No. 19 with

a node combination of 6-6 with BIAS (9.7/-10.9) & (2.0/3.2), RMSE (236.0/ 485.9)

& (266.9/520.9) and VAR (55593.5/235948.3) & (71221.6/271285.9). The training and

testing models for these models are presented in Fig. 4.19 (a) & (b) and Fig. 4.20 (a)

& (b), respectively.

 

FIGURE 3.9 (a): Model No. 21 with node combination 7-2 (without SCA) Training 

Model 

 

FIGURE 3.9 (b): Model No. 21 with node combination 7-2 (without SCA) Testing Model 

(a)

 

FIGURE 3.9 (a): Model No. 21 with node combination 7-2 (without SCA) Training 

Model 

 

FIGURE 3.9 (b): Model No. 21 with node combination 7-2 (without SCA) Testing Model 

(b)

Figure 4.19: Model No. 21 (Nodes: 7-2) developed for input combination
010101

(a) Training Phase, (b) Testing Phase
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FIGURE 3.10 (a): Model No. 19 with node combination 6-6 (without SCA) Training 

Model 

 

FIGURE 3.10 (b): Model No. 19 with node combination 6-6 (without SCA) Testing 

Model 

However, overall trend of results suggest that the models developed with integrated data 

has the better tendency to perform well with significant high values of NSE. The initial 

data-fusion through Gamma-test has also provided the same that the inputs with a mask 

(a)

 

FIGURE 3.10 (a): Model No. 19 with node combination 6-6 (without SCA) Training 

Model 

 

FIGURE 3.10 (b): Model No. 19 with node combination 6-6 (without SCA) Testing 

Model 

However, overall trend of results suggest that the models developed with integrated data 

has the better tendency to perform well with significant high values of NSE. The initial 

data-fusion through Gamma-test has also provided the same that the inputs with a mask 

(b)

Figure 4.20: Model No. 19 (Nodes: 6-6) developed for input combination
010101

(a) Training Phase, (b) Testing Phase

However, overall trend of results suggest that the models developed with integrated data

has the better tendency to perform well with significant high values of NSE. The initial
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data-fusion through Gamma-test has also provided the same that the inputs with a mask

111111 (SCA of Gilgit, Q at Gilgit, SCA of Bunji, Q at Bunji, SCA at Astore, Q at

Astore) will produce better models with least MSE. The time series plots for actual and

predicted stream flows at Besham Qila are presented in Fig. 4.21(a) and Fig. 4.21 (b)

respectively for combination 111111 and 010101.
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Fig. 4.21 (b) Time series plot for Besham Qila developed with combination 010101 

The results indicate that the discharge estimation models for Besham Qila, trained via two 

layer BFGS algorithm, performed better with the multi-source information (on-ground and 

satellite) as compared to the single source information (on-ground). The results clearly 

showed the dependency of stream-flow of Upper Indus Basin on the upland condition of 

(a)
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Fig. 4.21(a) Time series plot for Besham Qila developed with combination 111111 

 

  

 
 

The results indicate that the discharge estimation models for Besham Qila, trained via two 

layer BFGS algorithm, performed better with the multi-source information (on-ground and 

satellite) as compared to the single source information (on-ground). The results clearly 

showed the dependency of stream-flow of Upper Indus Basin on the upland condition of 

(b)

Figure 4.21: Time series plot for Besham Qila developed with combinationS.
(a) 111111 , (b) 010101
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The results indicate that the discharge estimation models for Besham Qila, trained via

two layer BFGS algorithm, performed better with the multi-source information (on-

ground and satellite) as compared to the single source information (on-ground).

The results clearly showed the dependency of stream-flow of Upper Indus Basin on the

upland condition of snow cover area (SCA) and evidenced the importance of satellite

derived SCA for a complex terrain of UIB.

4.3.4 Summary

The study is carried out to improve the real time streamflow estimation for a complex

terrain of UIB where on ground observations are limited. Since, the most part of the

watershed derives their flow from snow melt, so the satellite-derived SCA of the region

could be used as a crucial input variable. In this paper, a case study of UIB is considered

to improve the streamflow estimation models at BeshamQila through a fused data set,

comprising of on ground flow observations and satellite derived SCA of three (03) sub-

basins of UIB (Astore, Gilgit and Bunji).

The fusion process is carried out with the help of a novel mathematical tool, Gamma

test, which provided the best combination 111111 (SCA of Gilgit, Q at Gilgit, SCA of

Bunji, Q at Bunji, SCA at Astore, Q at Astore), with least value of MSE (0.000536).

The feed forward ANN models are trained via two layer BFGS algorithm with a variety

of node combinations. The data length for training is optimized with the help of M-test

in Win-Gamma environment and the least value of MSE, as determined by Gamma test,

is utilized as an early stopping criteria to avoid over-fitting in ANN models. In this case,

the best data length for training and testing of models comes out as 45% (165 weeks)

and 55% (203 weeks), respectively.

The streamflow estimation models are also developed for input combination 010101,

which only contains on ground flow observations. The both type of models are com-

pared on the basis of NSE, BIAS, RMSE and VAR. The results indicate that the models

developed with integrated data-set (combination: 111111) performed better with sig-

nificant high values of NSE and low values of other statistical errors; including BIAS,

RMSE and VAR.
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4.4 ANN Models Developed Through Data

Fusion

This section contains the results targeting the third and final objective of the research

work that is carried out to improve ANN based streamflow estimation models by adopt-

ing different data fusion options. The section contains results for input combination se-

lection,ANN model development, results comparison, a comprehensive discussion anda

summary of the research work.

4.4.1 Gamma Test Results

The GT is performed and MSE value (or Gamma Statistics) is calculated for all the

combinations which are; 1. Selected manually (data-fusion) based upon the type/nature

of data and 2. Selected through the feature selection methods. The detail of data

fusion options tried with respective Gamma value, Vratio and data length for training is

presented in Table 4.2.

Table 4.2: Gamma & Vratio values along with optimized data length for dif-
ferent Data Fusion options

Data (Normalized)

No. Inputs Combination / Mask
Inputs Gamma

Values

Vratio %Data

Train-

ing

1 P 1111111111110000000000000 12 0.054 0.626 76%

2 SR 0000000000001111000000000 4 0.04 0.459 71%

3 Q 0000000000000000000111111 6 0.004 0.047 63%

4 P +Q 1111111111110000000111111 18 0.002 0.024 38%

5 P + SR 1111111111111111000000000 16 0.023 0.271 71%

6 SCA 0000000000000000111000000 3 0.085 0.976 60%

7 SCA + Q* 0000000000000000111101100 6 0.072 0.827 76%

8 SCA + Q 0000000000000000111111111 9 0.004 0.041 57%

9 P+ S+Q 1111111111111111000111111 22 0.004 0.045 71%
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Data (Normalized)

No. Inputs Combination / Mask
Inputs Gamma

Values

Vratio %Data

Train-

ing

10 P+SCA+Q 1111111111110000111111111 21 0.002 0.022 65%

11 ALL 1111111111111111111111111 25 0.002 0.027 60%

Data Fusion through feature selection techniques

12 Full 1101111101011011000000000 12 0.014 0.161 54%

Embedding

13 Genetic 1011010000000001111110111 13 2.2 x 10−6 2.4 x 10−5 54%

Algorithm

14 Hill 1111101111111101101111111 22 1.9 x 10−5 2.2 x 10−4 54%

Climbing

15 Sequential 0010000010111001110111111 14 5.2 x 10−4 5.9 x 10−3 71%

Embedding

The data length for training is optimized using an optimizing function called M-Test,

which has already explained under section 3.3.3.

In WinGamma environment, the M-test does not provide any numerical cut-off value to

decide the length of data that should be used for model training, rather it provides a

graphical relationship between gamma value and increasing number of data points/ob-

servations. This graphical representation is then used to find that length of data at

which the change in gamma value with respect to increasing number of data points,

becomes minimum.

The few M-test outputs in form of graphs are presented in Fig. 4.22 for combination

no. 2 (Only SR), Fig. 4.23 for combination no. 8 (SCA+Q), Fig. 4.24 for combination

no.10 (P+SCA+Q), Fig. 4.25 for combination no. 12 (FE), Fig. 4.26 for combination

no. 13(GA) and Fig. 4.27 for combination no. 15 (SE).



Results & Discussion 103

 

Fig 4.1: M-Test result for combination no. 02 (Only SR) 

It is clear from the Fig. 4.1 that the change in gamma value is not significant after 260 

points and almost negligible after 300 points, so the data length for training should be 

considered in between 260 to 300 points. Therefore, the length for training is selected as 

260 for training models, which contains inputs comprising of past data condition of solar 

radiation.  

 

Fig 4.2: M-Test Result for combination no. 08 (SCA+Q) 

Figure 4.22: Stabilizing the Gamma Value with increasing data points for
combination no. 2

It is clear from the Fig. 4.22 that the change in gamma value is not significant after 260

points and almost negligible after 300 points, so the data length for training should be

considered in between 260 to 300 points. Therefore, the length for training is selected

as 260 for training models, which contains inputs comprising of past data condition of

solar radiation.

 

Fig 4.1: M-Test result for combination no. 02 (Only SR) 

It is clear from the Fig. 4.1 that the change in gamma value is not significant after 260 

points and almost negligible after 300 points, so the data length for training should be 

considered in between 260 to 300 points. Therefore, the length for training is selected as 

260 for training models, which contains inputs comprising of past data condition of solar 

radiation.  

 

Fig 4.2: M-Test Result for combination no. 08 (SCA+Q) Figure 4.23: Stabilizing the Gamma Value with increasing data points for
combination no. 8

For inputs containing snow cover area and discharges, the value of gamma error becomes

stable at around 200, 210 points, after which the change in graph (Fig. 4.23) is negligible.
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So, for this purpose the data length for training is considered as 210 points, which

constitutes the 57% of the whole data length.

For inputs containing snow cover area and discharges, the value of gamma error becomes 

stable at around 200, 210 points, after which the change in graph (Fig. 4.2) is negligible. 

So, for this purpose the data length for training is considered as 210 points, which 

constitutes the 57% of the whole data length.  

 

Fig 4.3: M-Test Result for combination no. 10 (P+SCA+Q) 

Fig 4.3 represents the M-test conducted for increasing number of points for combination 

of inputs containing precipitation, snow cover area and discharge. It could be observed that 

the gamma value becomes stable after 240 points with no or little change in the gamma 

value with increasing number of data points. Therefore, the training data length for this 

combination is taken as 240 points.  

Figure 4.24: Stabilizing the Gamma Value with increasing data points for
combination no. 10

Fig 4.24 represents the M-test conducted for increasing number of points for combination

of inputs containing precipitation, snow cover area and discharge. It could be observed

that the gamma value becomes stable after 240 points with no or little change in the

gamma value with increasing number of data points. Therefore, the training data length

for this combination is taken as 240 points.

 

Fig 4.4: M-Test Result for combination no. 12 (FE) 

It is clear from Fig. 4.4 that the graph between gamma values vs. unique data points 

becomes almost stable after 200 points and there is no sharp variation observed in the 

gamma value for further increase in data points. So, the length of data is selected as 200 

out of total 368 weeks, which is utilized for training the models by using the input 

combination finalized through full embedding.  

 

Fig 4.5: M-Test Result for combination no. 13 (GA) 

Figure 4.25: Stabilizing the Gamma Value with increasing data points for
combination no. 12
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It is clear from Fig. 4.25 that the graph between gamma values vs. unique data points

becomes almost stable after 200 points and there is no sharp variation observed in the

gamma value for further increase in data points. So, the length of data is selected as

200 out of total 368 weeks, which is utilized for training the models by using the input

combination finalized through full embedding.

 

Fig 4.4: M-Test Result for combination no. 12 (FE) 

It is clear from Fig. 4.4 that the graph between gamma values vs. unique data points 

becomes almost stable after 200 points and there is no sharp variation observed in the 

gamma value for further increase in data points. So, the length of data is selected as 200 

out of total 368 weeks, which is utilized for training the models by using the input 

combination finalized through full embedding.  

 

Fig 4.5: M-Test Result for combination no. 13 (GA) Figure 4.26: Stabilizing the Gamma Value with increasing data points for
combination no. 13

Fig. 4.26 represents the gamma value variation with respect to increasing data points,

when the M-test is conducted on the combination of inputs determined through genetic

algorithm. The graph in this figure indicates a stable gamma value after 200 data

points, which is The gamma value trend with increasing number of data points for input

combination determined through sequential embedding is shown in Fig. 4.27. It is clear

from the Fig. 4.27 that the change in gamma value after 260 points is not significant.

Therefore, the optimum value of training data length is taken as 260 for this combination

of inputs. The M-test results for other combination of inputs, which are not discussed

here, are presented in the form of graphs in (Annex-4A).

It is clear from the results that the gamma value for almost all the combinations is close

to zero. However, the minimum values are observed for the combinations made through

feature selection methods, e.g. 2.2×10−6, 1.9×10−5 and 5.2×10−4 for GA, SE and HC,

respectively. Although, the gamma value close to zero is an indication that the noise

among the data is less but alone this value should not be used as a criterion to screen the

inputs, because the gamma test bears the assumption that the noise or non-smoothness
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in data is only due to the statistical noise. Whereas, this is not true for all cases, e.g.

when the outcome predicted is of a probabilistic nature.

Fig. 4.5 represents the gamma value variation with respect to increasing data points, when 

the M-test is conducted on the combination of inputs determined through genetic algorithm. 

The graph in this figure indicates a stable gamma value after 200 data points, which is the 

value considered further for model training process.  

 

Fig 4.6: M-Test Result for combination no. 15 (SE) 

The gamma value trend with increasing number of data points for input combination 

determined through sequential embedding is shown in Fig. 4.6. It is clear from the Fig. 4.6 

that the change in gamma value after 260 points is not significant. Therefore, the optimum 

value of training data length is taken as 260 for this combination of inputs.  

The M-test results for other combination of inputs, which are not discussed here, are 

presented in the form of graphs in (Annex- 4A) 

4.7 ANN Model Development 

The Gamma value for each set of input combination, as presented in Table 4.2, is selected 

as a targeted MSE to train ANN based streamflow estimation models. The ANN models 

are trained via two layered feed forward BFGS algorithm. The reason behind using two 

hidden layers in a neural network is due to their ability of solving nonlinear problems as 

Figure 4.27: Stabilizing the Gamma Value with increasing data points for
combination no. 15

To overcome this problem, Vratio is also calculated in addition to gamma value. This

value is basically a scale invariant noise which is used to standardize the Gamma value.

It is the measure of how well a predictor could be modelled by a smooth function. The

value of Vratio close to zero means that the gamma value is the true reflection of the

MSE present in the data, whereas the value closer to 1 means that the data is more

like of a probabilistic nature. The results showed that the value of Vratio is very less

(close to 0) when we use; only discharge, precipitation + discharge, snow cover area

+ discharge, precipitation + solar radiation + discharge; precipitation + snow cover

area + discharge; and all inputs together. The value of Vratio is near to 1 for the input

combinations; precipitation, solar radiation, precipitation + solar radiation, snow cover

area + respective discharge. It shows that the gamma value for these set of input

combinations is not reliable and could not be taken as the targeted MSE for the model

development process, confidently.

4.4.2 ANN Model Results & Discussion

The targeted MSE calculated through gamma test is used to train ANN models via

two layer BFGS algorithm. The models are trained using the optimum data length
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determined through M-test. The models are tested on the remaining set of data length

which is not utilized in the model training process. The performance of ANN based

models for a variety of combinations is evaluated on the basis of a set of performance

indicators as explained under section 3.3.6. The results of these models are displayed

in the form of Box plots as presented in Figs. (4.28), (4.29), (4.30) and (4.31). (The

detail results are presented in Annex-4B) The spread of performance indicators at a

given combination shows the variation in the value of that particular indicator with

respect to the different architecture of ANN models. i.e. The value of R2 is calculated

for a combination of inputs that contains only precipitation data (P), which is used to

develop models with different node combinations in hidden layers.

4.8.2 ANN Results 

The targeted MSE calculated through gamma test is used to train ANN models via two 

layer BFGS algorithm. The models are trained using the optimum data length determined 

through M-test. The models are tested on the remaining set of data length which is not 

utilized in the model training process. The performance of ANN based models for a variety 

of combinations is evaluated on the basis of a set of performance indicators as explained 

under section 2.4. The results of these models are displayed in the form of Box plots as 

presented in Figs. (4.1), (4.2), (4.3) and (4.4). (The detail results are presented in Annex-

4A) The spread of performance indicators at a given combination shows the variation in 

the value of that particular indicator with respect to the different architecture of ANN 

models. i.e. The value of R2 is calculated for a combination of inputs that contains only 

precipitation data (P), which is used to develop models with different node combinations 

in hidden layers (as presented in Table 4.3)  

 

Fig 4.1: Variation of R2 for different input combinations Figure 4.28: Variation of R2 for different input combinations

 

Fig. 4.2 Variation of NSE for different input combinations 

 

Fig. 4.3 Variation of BIAS for different input combinations 

Figure 4.29: Variation of NSE for different input combinations
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Fig. 4.2 Variation of NSE for different input combinations 

 

Fig. 4.3 Variation of BIAS for different input combinations 
Figure 4.30: Variation of BIAS for different input combinations

 

Fig. 4.4 Variation of RMSE for different input combinations 

 

It is clear from Fig. 4.1 that the spread of R2 using P, SR, SCA and SCA+Q* as inputs for 

different architectures of ANN models ranges from 0 to 0.5, which is not acceptable in 

terms of model efficiency. The low values of R2 for these combinations means that the 

output (discharge at Tarbela) could not be modelled accurately using these set of input 

combinations. The one interesting output of this result is the better values of R2 for SCA+Q 

as compared to the SCA+Q*. It means that the SCA of three sub-catchments (Gilgit, Astore 

and Bunji) along with their respective discharges (Q*) could only be used for the effective 

modeling of streamflow at downstream (Tarbela), when the discharges of other stations are 

also included in the inputs set. It is also noted that the values of R2 are good for input 

combinations made through feature selection methods (especially for GA and SE) and 

when the number of climate variables are more than 3, i.e. in case of P+S+Q, P+SCA+Q 

and ALL. A similar trend has been observed for NSE (Fig. 4.2) for developed models, 

except a slight high values for all input combinations as compared to R2. The same trend 

for R2 and NSE is due to the reason that both the performance indicators measure that how 

well an output is correlated with the given input/s.  

Figure 4.31: Variation of RMSE for different input combinations

It is clear from Fig. 4.28 that the spread of R2 using P, SR, SCA and SCA+Q* as inputs

for different architectures of ANN models ranges from 0 to 0.5, which is not acceptable

in terms of model efficiency. The spread of box-plot while using combinations Q, SCA,

SCA+Q and P+S+Q is relatively small (Fig. 4.28 and Fig. 4.29) as compared to

the other combination of inputs, which shows that these combination showed a little
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variation with respect to changing ANN model structures in the values of R2 and NSE

as compared to the other input options.

Similarly, most of the values for these indices lie within the range of first and third

quartile. However, the combinations made through feature selection methods showed

more variation for changing model structures with relatively large box plot and more

spread specifically for first quartile. The similar trend of changing values has been

observed in case of BIAS (Fig. 4.30) and RMSE (4.31) values for these combinations.

These show that the input combinations determined through feature selection techniques

have more flexibility to change their output by changing the model structure or tech-

nique. Therefore, a careful selection of model structure is mandatory, otherwise the

combinations made through feature section may perform even worse than the combina-

tions made through any other ordinary method/s.

The low values ofR2 for these combinations means that the output (discharge at Tarbela)

could not be modelled accurately using these set of input combinations. The week

correlation between actual and predicted values can be observed in model, as presented

in Figs. 4.32 (a) and 4.32 (b), developed using only P as input with node combination

1-3.

 

FIGURE 4.11 (a): Model developed using only P (node combination 1-3) Training Model 

 

FIGURE 4.11 (b): Model developed using only P (node combination 1-3) Testing Model 

The one interesting output of this result is the better values of R2 for SCA+Q as compared 

to the SCA+Q*. It means that the SCA of three sub-catchments (Gilgit, Astore and Bunji) 

along with their respective discharges (Q*) could only be used for the effective modeling 

of streamflow at downstream (Tarbela), when the discharges of other stations are also 

included in the inputs set. It is also noted that the values of R2 are good for input 

combinations made through feature selection methods, especially for GA and SE. The 

(a)
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FIGURE 4.11 (a): Model developed using only P (node combination 1-3) Training Model 

 

FIGURE 4.11 (b): Model developed using only P (node combination 1-3) Testing Model 

The one interesting output of this result is the better values of R2 for SCA+Q as compared 

to the SCA+Q*. It means that the SCA of three sub-catchments (Gilgit, Astore and Bunji) 

along with their respective discharges (Q*) could only be used for the effective modeling 

of streamflow at downstream (Tarbela), when the discharges of other stations are also 

included in the inputs set. It is also noted that the values of R2 are good for input 

combinations made through feature selection methods, especially for GA and SE. The 

(b)

Figure 4.32: Model developed using only P (node combination 1-3).
(a) Training Model, (b) Testing Model

The one interesting output of this result is the better values of R2 for SCA+Q as

compared to the SCA+Q*. It means that the SCA of three sub-catchments (Gilgit,

Astore and Bunji) along with their respective discharges (Q*) could only be used for

the effective modeling of streamflow at downstream (Tarbela), when the discharges of

other stations are also included in the inputs set. It is also noted that the values of R2

are good for input combinations made through feature selection methods , especially for

GA and SE. The model developed with combination determined through GA shows a

good correlation between actual and modelled values (Fig. 4.33 (a) & 4.33 (b)).

model developed with combination determined through GA shows a good correlation 

between actual and modelled values (Fig. 4.12 (a) & 4.12(b)).  

 

FIGURE 4.12 (a): Model developed using combination determined through GA (with 

node combination 1-1) Training Model 

  

FIGURE 4.12 (b): Model developed using combination determined through GA (with 

node combination 1-1) Testing Model 

(a)
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model developed with combination determined through GA shows a good correlation 

between actual and modelled values (Fig. 4.12 (a) & 4.12(b)).  

 

FIGURE 4.12 (a): Model developed using combination determined through GA (with 

node combination 1-1) Training Model 

  

FIGURE 4.12 (b): Model developed using combination determined through GA (with 

node combination 1-1) Testing Model 

(b)

Figure 4.33: Model developed using combination determined through GA
(with node combination 1-1).

(a) Training Model, (b) Testing Model

Similarly, the model developed using combination determined through SE also performed

well with significant high values of R2 in both training and testing phases as shown in

Fig. 4.34 (a) and (b).

Similarly, the model developed using combination determined through SE also performed 

well with significant high values of R2 in both training and testing phases as shown in Fig. 

4.13 (a) and (b) 

 

FIGURE 4.13 (a): Model developed using combination determined through SE (with 

node combination 1-1) Training Model 

  

FIGURE 4.13 (b): Model developed using combination determined through SE (with 

node combination 1-1) Testing Model 

(a)
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Similarly, the model developed using combination determined through SE also performed 

well with significant high values of R2 in both training and testing phases as shown in Fig. 

4.13 (a) and (b) 

 

FIGURE 4.13 (a): Model developed using combination determined through SE (with 

node combination 1-1) Training Model 

  

FIGURE 4.13 (b): Model developed using combination determined through SE (with 

node combination 1-1) Testing Model 

(b)

Figure 4.34: Model developed using combination determined through SE
(with node combination 1-1).

(a) Training Model, (b) Testing Model

The models developed with the number of climate variables more than 3, i.e. in case of

P+S+Q, P+SCA+Q and ALL, performed better as compared to the models developed

with less number of input variables. The model with node combination 1-1, developed

using P+S+Q is shown in Fig. 4.35 (a) and (b). The high value of R2 in both phases is

the proof that the models developed using combination containing these input variables

are correlating well with the output.

The models developed with the number of climate variables more than 3, i.e. in case of 

P+S+Q, P+SCA+Q and ALL, performed better as compared to the models developed with 

less number of input variables. The model with node combination 1-1, developed using 

P+S+Q is shown in Fig. 4.14 (a) and (b). The high value of R2 in both phases is the proof 

that the models developed using combination containing these input variables are 

correlating well with the output.  

 

FIGURE 4.14 (a): Model developed using P+S+Q (with node combination 1-1) Training 

Model  

 

(a)



Results & Discussion 113

The models developed with the number of climate variables more than 3, i.e. in case of 

P+S+Q, P+SCA+Q and ALL, performed better as compared to the models developed with 

less number of input variables. The model with node combination 1-1, developed using 

P+S+Q is shown in Fig. 4.14 (a) and (b). The high value of R2 in both phases is the proof 

that the models developed using combination containing these input variables are 

correlating well with the output.  

 

FIGURE 4.14 (a): Model developed using P+S+Q (with node combination 1-1) Training 

Model  

 

(b)

Figure 4.35: Model developed using P+S+Q (with node combination 1-1).
(a) Training Model, (b) Testing Model

The models developed using P+SCA+Q and ALL are presented in Fig. 4.36 (a) & (b)

and Fig. 4.37 (a) & (b), respectively. The better correlation in these models is the

depiction that more input variables provide a better picture of hydrological process in a

catchment.

FIGURE 4.14 (b): Model developed using P+S+Q (with node combination 1-1) Testing 

Model 

The models developed using P+SCA+Q and ALL are presented in Fig. 4.15 (a) & (b) and 

Fig. 4.16 (a) & (b), respectively. The better correlation in these models is the depiction 

that more input variables provide a better picture of hydrological process in a catchment.  

 

FIGURE 4.15 (a): Model developed using P+SCA+Q (with node combination 1-1) 

Training Model 

  

(a)
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FIGURE 4.14 (b): Model developed using P+S+Q (with node combination 1-1) Testing 

Model 

The models developed using P+SCA+Q and ALL are presented in Fig. 4.15 (a) & (b) and 

Fig. 4.16 (a) & (b), respectively. The better correlation in these models is the depiction 

that more input variables provide a better picture of hydrological process in a catchment.  

 

FIGURE 4.15 (a): Model developed using P+SCA+Q (with node combination 1-1) 

Training Model 

  

(b)

Figure 4.36: Model developed using P+SCA+Q (with node combination 1-1).
(a) Training Model, (b) Testing Model

FIGURE 4.15 (b): Model developed using P+SCA+Q (with node combination 1-1) 

Testing Model 

 

 

 

FIGURE 4.16 (a): Model developed using ALL input variables (with node combination 

5-5) Training Model 

  

(a)
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FIGURE 4.15 (b): Model developed using P+SCA+Q (with node combination 1-1) 

Testing Model 

 

 

 

FIGURE 4.16 (a): Model developed using ALL input variables (with node combination 

5-5) Training Model 

  

(b)

Figure 4.37: Model developed using ALL input variables (with node combi-
nation 5-5).

(a) Training Model, (b) Testing Model

A similar trend has been observed for NSE (Fig. 4.29) for developed models, except a

slight high values for all input combinations as compared to R2.

The same trend for R2 and NSE is due to the reason that both the performance indicators

measure that how well an output is correlated with the given input/s.

The spread of BIAS for developed models (Fig. 4.21), shows less values (near 0) for the

input combinations made through feature selection methods, ALL, P+S+Q, SCA+Q

and Q. it means that the difference in average values of modelled and observed discharges

is less for models developed using these set of input combinations. A similar trend has

been observed in the RMSE values for all the developed models (Fig. 4.31).

It is also noted from the Fig. (4.28), (4.29), (4.30) and (4.31) that the models developed

with the input combination containing only discharges (Q) of different stations also

performed well with high values of R2 and NSE, and less values of BIAS and RMSE. A

model with node combination, developed with Q is presented in Fig. 4.38.
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FIGURE 4.16 (a): Model developed using ALL input variables (with node combination 

5-5) Testing Model 

A similar trend has been observed for NSE (Fig. 4.8) for developed models, except a slight 

high values for all input combinations as compared to R2. The same trend for R2 and NSE 

is due to the reason that both the performance indicators measure that how well an output 

is correlated with the given input/s.  

The spread of BIAS for developed models (Fig. 4.9), shows less values (near 0) for the 

input combinations made through feature selection methods, ALL, P+S+Q, SCA+Q and 

Q. it means that the difference in average values of modelled and observed discharges is 

less for models developed using these set of input combinations. A similar trend has been 

observed in the RMSE values for all the developed models (Fig. 4.10).  

It is also noted from the Fig. (4.7), (4.8), (4.9) and (4.10) that the models developed with 

the input combination containing only discharges (Q) of different stations also performed 

well with high values of R2 and NSE, and less values of BIAS and RMSE. A model with 

node combination, developed with Q is presented in Fig. 4.17. 

 

FIGURE 4.17 (a): Model developed using Q (with node combination 2-2) 

 Training Model 

(a)

  

FIGURE 4.17 (b): Model developed using Q (with node combination 2-2) 

 Testing Model 

4.9 Summary  

The chapter aims at the development of ANN based streamflow estimation models through 

a variety of data fusion options. The inputs to the models are basically the antecedent data 

condition of UIB catchment. Four types of climate variables are considered including 

Precipitation (P), Discharge (Q), Solar Radiation (SR) and Snow Cover Area (SCA). A 

variety of input combinations are made and the impact of each combination is evaluated 

for our desired output (which is discharge at Tarbela) through a model development 

process.  

The combination of inputs are made on the basis of type/nature of data or through advanced 

feature selection methods. The feature selection methods utilized in this study are Genetic 

Algorithm (GA), Hill Climbing (HC), Sequential Embedding (SE) and Full Embedding 

(FE). Gamma test is performed on all the combinations to assess the value of MSE, prior 

to model development process. This MSE or gamma value is considered as the targeted 

MSE for the model training. The data length for training is optimized through a 

mathematical function, M-test.  

(b)

Figure 4.38: Model developed using Q (with node combination 2-2).
(a) Training Model, (b) Testing Model

The time series plots for are presented for the models developed using input variables

that contain only discharge (Q) of upstream stations to model the stream flow at Tarbela

in and the input variables determined through Sequential Embedding (SE) in Fig. 4.39

(a) and Fig. 4.39(b), respectively.
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The time series plots for are presented for the models developed using input variables that 

contain only discharge (Q) of upstream stations to model the stream flow at Tarbela  in and 

the input variables determined through Sequential Embedding (SE) in Fig. 39 (a) and Fig. 

39 (b), respectively. 

 

Fig. 4.39 (a) Time-series plot for models developed using combination of input variables 

which contains only Q  

 

(a)
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The time series plots for are presented for the models developed using input variables that 

contain only discharge (Q) of upstream stations to model the stream flow at Tarbela  in and 

the input variables determined through Sequential Embedding (SE) in Fig. 39 (a) and Fig. 

39 (b), respectively. 

 

Fig. 4.39 (a) Time-series plot for models developed using combination of input variables 

which contains only Q  

 

(b)

Figure 4.39: (a) Time-series plot for models developed using combination of
input variables which contains only Q.

(b) Time-series plot for models developed using combination of input variables
determined through SE

4.4.3 Summary

The study aims at the development of ANN based streamflow estimation models through

a variety of data fusion options. The inputs to the models are basically the antecedent
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data condition of UIB catchment. Four types of climate variables are considered in-

cluding Precipitation (P), Discharge (Q), Solar Radiation (SR) and Snow Cover Area

(SCA). A variety of input combinations are made and the impact of each combination

is evaluated for our desired output (which is discharge at Tarbela) through a model

development process.

The combination of inputs are made on the basis of type/nature of data or through

advanced feature selection methods. The feature selection methods utilized in this study

are Genetic Algorithm (GA), Hill Climbing (HC), Sequential Embedding (SE) and Full

Embedding (FE). Gamma test is performed on all the combinations to assess the value

of MSE, prior to model development process. This MSE or gamma value is considered

as the targeted MSE for the model training. The data length for training is optimized

through a mathematical function, M-test.

The ANN models are trained for all combinations via 2-layered BFGS algorithm. For

fifteen (15) combination of inputs, ANN models are developed for nine (9) different ar-

chitectures that sums to a total of 135 models. Testing phase of models involve checking

the performance of developed models for unseen data through a set of performance indi-

cators. The performance indicators used in this study are; Coefficient of determination

(R2), Nash Sutcliffe Efficiency (NSE), Root Mean Square Error (RMSE) and BIAS.

The results showed that; in general, the models developed with combinations containing

more than 2 climate variables performed well and in particular, the models developed

through input combinations made through feature selection methods outperformed. The

results indicated that the upland catchment discharge (Q) is the only input variable that

could be used to model the streamflow in the region with reasonable accuracy. However,

the results showed that other variables in combination with Q enhances the accuracy of

these models.

4.5 Overall Discussion

Provision of better input state to the hydrological models can significantly improve the

performance efficiency of models because the hydrological data in raw form may con-

tains undulations, errors and inconsistency problems. Although ANN dont have any

explicit requirement of data normality and are considered capable of performing well
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for nonlinear data but the improvement in their performance is noted through chang-

ing the shape and scale of data. However, the preprocessing options should be applied

carefully as a mathematical transformation of physical process may create uncertainties

as reported by [3], which identified the decline in efficiency of models due to the use

of Wavelet Analysis (WA) and Empirical Mode Decomposition (EMD). These complex

transformation are affected by the boundary conditions. Similarly, [204] reported defi-

ciencies in mode mixing for EMD. On the other hand, despite of the many advantages of

wavelet based methods, [205] identified adaptability issues in this method. In this case,

the simple transformations have less complexities and can improve the hydrological data

by reducing skewness and making data normal.

Similarly, the Gamma test proved its significance in estimating the variance of noise on

an output before the start of the modeling process. This helped out the appropriate

selection of inputs which are capable of modeling the output with more accuracy and

less mean square error.

As compared to the conventional approaches used for the generalization, the Gamma test

is superior in the context that the noise present in the data is already known and could

be used to access the model performance, prior to the model building. It also reduces

the need of separate validation data-set which is usually required for conventional early

stopping methods to overcome the over-fitting in models. Previously the gamma test

have been utilized by [108], [173], [180], to determine the best input combinations for

the sediment load estimation models but the approach is limited as the gamma value is

calculated for random combinations instead of checking all possible combinations, which

is performed in this study with the help of advance feature selection methods.

In this study, BFGS is used to train ANN models which is essentially a gradient based

function and these functions often stuck at local minima and may create over-fitting in

models. But in this case we already know the value of minima (gamma value) through

Gamma test. All the models are trained to achieve this value, and from the results, it is

quite clear that all the achieved MSE values for Training are almost equal to the MSE

values which are targeted. In Win Gamma, the training data is periodically shuffled to

avoid repetitive cycles that may result in the algorithm getting stuck at local minima.

Each vector is fed into the network and the error calculated between the expected output

and the actual output and the weights in the network are adjusted accordingly. The
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algorithm tests to see if the stopping criteria (Gamma Value) has been reached after

each iteration.

The data-driven hydrological models are entirely dependent upon the input output data

which are essentially the observations of climate variables. In case of modeling the catch-

ment response, the selection of climate variables are very important as a catchment may

observe contrasting regimes. Like in this case, the UIB observe contrasting hydrometeo-

crysopheric regimes. The most part of the flow is derived by the melting of snow and

glaciers, so the snow cover area is considered as an important factor in capturing the

catchment response in addition to other climate variables. Due to the complexity of the

UIBs terrain and limited availability of the meteorological network, the satellite derived

snow covered area is utilized. The dependency of stream flow of the UIB catchment

on the satellite derived SCA is proved in the previous chapters. Similarly the Solar

radiation is also considered as an important variable in estimating the catchment re-

sponse, the input combinations containing solar radiation with other primary variables

performed well as compared to the input combinations containing primary variables (P

and Q), only. The comparison of model results developed with and without considering

the solar radiation as an input variable is presented in Annex-4C.

Previously, [206] integrated ANN based decomposition models to predict stream flow

in UIB with maximum NSE of 85% in validation phase. Similarly [207] developed Soil

Water and Assessment Tool (SWAT) to capture the flow of UIB with reasonable accuracy

(Maximum R2 = 85%). [46] developed models for UIB with NSE > 90% but the interval

of estimation is high (monthly) for which the nonlinearity in the data is usually less as

compared to the present research which developed models for weekly flow estimation

models. The results of present study showed improvement in the UIB flow estimation

models through coupled use of data preprocessing and data fusion with each of R2 and

NSE > 95%.



Chapter 5

Conclusions & Recommendations

5.1 General

The results in chapter 4 revealed that the ANN based hydrological models has shown

significant improvement for a complex catchment of UIB through data preprocessing,

using satellite derived SCA, and applying different data fusion techniques. The current

chapter presents the point wise conclusions made on the basis of all these results, adopted

methodologies and literature background, which are discussed in detail in the previous

chapters. This chapter also explains broader significance and implications of the research

work along with the precincts of the adopted techniques and future recommendations.

5.2 Conclusions

1. The data-set transformed through Box-Cox creates a better input state, by reduc-

ing the noise through scaling of the data in a range that is more proportionate

to the transfer function in the output layer of an ANN model. Thus, creating

better learning maps with improved ANN training capacity and improved Model

generalization.

2. Although, there is no specific requirement of data normality to be used for ANN,

However the results indicate that the performance of models have significantly

increased by using the data that has been transformed towards normality.

121
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3. The Box-Cox Transformation provides an opportunity to change the data in a

desired shape/ format by changing the power factor, which is more acceptable for

model development process

4. The selection of inputs through the Gamma-Test acts as a part of preprocessing

process and provides an opportunity to clean the data through excluding noisy

inputs by providing an accurate estimate of variance of inputs on desired output.

5. The natural undulations in hydrological data needs to be preprocessed before

applying hydrological models to improve the model’s performance as confirmed

by this research-work. The results showed the dependency of stream flow of Upper

Indus Basin on the upland condition of snow cover area (SCA). It gives an evidence

for the importance of satellite-derived SCA for a complex terrain of UIB.

6. This study concluded that the combined data-set comprising of SCA and gauge

observations represents the watershed response better than the data-set only con-

sisting of on-ground observations.

7. The present work also demonstrates the importance of conjunctive use of the

Gamma Test and ANN to enhance the ability of ANN to perform well in the

development of runoff models for mountainous catchments.

8. The higher value for Gamma value and Vratio for (P), (SR), (SCA) and (SCA+Q*)

is a clear indication that the gamma value is not a true depiction of statistical

noise in the data. The same is reflected in the results.

9. Despite of the contrasting regimes of UIB, the discharge of upland catchment is

well modelled to predict Q at Tarbela. Therefore, the antecedent flow condition

of upland catchment could be used confidently for the stream flow estimation at

Tarbela, as compared to any other climate variable.

10. The study finds that the use of catchment information containing only single

climate variable (like P, SR or SCA) is unable to capture the response of the UIB

at Tarbela, despite of choosing ANN based non-linear modeling option

11. The ANN models developed using multiple climate variables also performed well

(Like; P+SCA+Q, P+SR+Q and P+SR+SCA+Q)
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12. It is concluded that the use of multiple type/ sources of variables is beneficial

to capture the response of complex catchment of UIB as compared to the single

type/ source of information.

13. Selecting the less noisy observation through feature selection methods is found

more advantageous as compared to integrating the all available information.

14. It is concluded that the feature selection techniques like GA, Hill Climbing and

Sequential Embedding could be used successfully for the data fusion of hydrolog-

ical time series with the correct measure of statistical noise (Gamma Value) in

hydrological data.

5.3 Research Significance and Implications

Data fusion in hydrological forecasting provides an opportunity for the researchers to

improve real time hydrological forecasting by incorporating different types, nature and

sources of data. It was expected that the amalgamation of data provides a better picture

of UIB catchment which not only have different behavioral phases but also observes

contrasting regimes. The integrated data-set containing all variables together and/or in

combination performed better as expected earlier that the multi-type and multi-source

data could provide a better catchment response as compared to one type or single-source

data.

This study evidenced that the fused data-set comprising of SCA and gauge observations

represents the watershed response better than the data-set only consisting of on-ground

observations. The present work also demonstrated the significance of conjunctive use of

the Gamma Test and Artificial Neural Networking (ANN) approaches and the ability of

ANN to perform well in the development of run-off models for mountainous catchments.

Moreover, it is suggested that the uncertainty in the hydrological estimation models

could be reduced by knowing more about the watershed. So, the multi-source/type

information like climate and meteorological observations (e.g. temperature, solar radia-

tions and rainfall, etc.), more satellite observations (e.g. gridded precipitation and LST)

and multisensors data (different satellite products and airborne data) could be used and

fused with the traditional observations to improve the real time flow forecasts.
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The feature selection methods work on the principal that how well a given input or a set

of inputs correlates with the given output. Therefore, these techniques select only those

inputs among the all candidate inputs that corresponds well with the presence of less

noise while modeling our desired output. Hence, it is suggested that besides the selection

of climate variables on the basis of their type, nature or source, the noise present in the

data plays a crucial role in input selection criteria. It is also established that the gamma

test provides a good estimate of variance of noise on an output through gamma value

and Vratio. The models developed through the combination of inputs with Vratio closer

to 1, didn’t perform well with less values of R2, NSE and high values of RMSE and

BIAS. This clearly showed the importance of Gamma test in preliminary selection of

input combination (data fusion).

The Box-Cox transformation provides an opportunity to transform the hydrological

data through a family of power transformation. This family of power transformation

contains other well-known transformations under its umbrella like square root trans-

formation, cube root transformation, inverse transformation and log transformation.

However, compared to these transformations, the results indicate that the data trans-

formed through the power factor = 0.005, provides the best approximation to the normal

distribution. Therefore, it is suggested to use Box-cox transformation as a preprocessing

option as it offers an optimal solution for the researchers to transform their data in a

shape that is more acceptable for model calibration process.

5.4 Precincts of Techniques used in Study

The study is carried out with the help of techniques, which are applied with some

precincts/boundaries and are mentioned below:

1. The power factor (λ) for Box-Cox transformation could take infinite values and

similarly results in infinite number of transformations. The current research uses

only eleven (11) different values of λ through hit & trial and found 0.01 and 0005

as the best values. Further, the data transformed through 0.005 is only used for

model development process.

2. The Gamma test is used to calculate the noise present among the data, prior to

model development. This noise (gamma value) only describe the “statistical noise”
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present among the data. The maximum input variables used for this research

work are twenty five (25). For this, the possible combinations of inputs are 225−1

that require an extensive computational effort. Therefore, the combination are

finalized either (on the basis of this gamma value) through a set of feature selection

techniques or manual selection based upon the type/nature of data.

3. The nodes in hidden layers of ANN architecture have been selected through hit &

trial and evaluated on the basis of set of performance indicators. The limited set

of nodes are tried with two fixed hidden layers and ANN models are trained using

only BFGS Algorithm. The results obtained through this specific set of conditions

are generalized for overall ANN based stramflow estimation models.

5.5 Recommendations

1. The use of data preprocessing is recommended for hydrological model develop-

ment, especially for streamflow estimation models. Besides Box-Cox transforma-

tion, the other simple transformations like Moving Average, Log Normalization,

Chi square, etc. may also be tried and compared for a variety of nonlinear mod-

eling options.

2. It is recommended to carry out the selection of climate variables for hydrological

forecasting through advanced feature selection methods.

3. It is recommended to use satellite derived SCA as one of the possible input variable

for complex and mountainous catchments where most part of the flow is derived

by melting of snow and glaciers.

4. It is recommended to combine new observations like in-situ sensors data, airborne

data and remotely sensed data with the traditional on ground observations to

create a “more informed data state” for hydrological models.

5. For future possibilities, data-fusion could be used along with model-fusion to im-

prove the hydrological forecasting.
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Fig. 4A: M-Test Result for combination 01 (Only P) 

 

 

Fig. 4B: M-Test result for combination 03 (Only Q) 

Figure 1: M-Test Result for combination 01 (Only P)
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Fig. 4B: M-Test result for combination 03 (Only Q) Figure 2: M-Test result for combination 03 (Only Q)
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Fig. 4C: M-Test result for combination 04 (P+Q) 

 

 

Fig. 4D: M-Test result for combination 05 (P+SR) 

Figure 3: M-Test result for combination 04 (P+Q)

 

Fig. 4C: M-Test result for combination 04 (P+Q) 

 

 

Fig. 4D: M-Test result for combination 05 (P+SR) Figure 4: M-Test result for combination 05 (P+SR)
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Fig. 4E: M-Test result for combination 06 (Only SCA) 

 

 

Fig. 4F: M-Test result for combination 07 (SCA+Q*) 

Figure 5: M-Test result for combination 06 (Only SCA)

 

Fig. 4E: M-Test result for combination 06 (Only SCA) 

 

 

Fig. 4F: M-Test result for combination 07 (SCA+Q*) Figure 6: M-Test result for combination 07 (SCA+Q*)
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Fig. 4G: M-Test result for combination 09 (P+S+Q) 

 

 

Fig. 4H: M-Test result for combination 11 (ALL) 

Figure 7: M-Test result for combination 09 (P+S+Q)

 

Fig. 4G: M-Test result for combination 09 (P+S+Q) 

 

 

Fig. 4H: M-Test result for combination 11 (ALL) Figure 8: M-Test result for combination 11 (ALL)
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Fig. 4I:  M-Test result for combination 14 (HC) Figure 9: M-Test result for combination 14 (HC)
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Table 1: R2 Values for different architectures of ANN using multiple combination options

Models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1-1 (Train) 0.37 0.44 0.92 0.93 0.66 0.04 0.12 0.93 0.94 0.94 0.94 0.66 0.94 0.94 0.94

1-1 (Test) 0.31 0.4 0.91 0.88 0.66 0.05 0.05 0.91 0.91 0.91 0.89 0.45 0.91 0.91 0.91

1-3 (Train) 0.37 0.46 0.93 0.93 0.72 0.04 0.1 0.93 0.95 0.94 0.96 0.68 0.95 0.95 0.94

1-3 (Test) 0.29 0.46 0.9 0.88 0.43 0.05 0.00 0.91 0.91 0.91 0.89 0.47 0.88 0.73 0.91

1-5 (Train) 0.37 0.42 0.93 0.94 0.67 0.01 0.17 0.94 0.95 0.95 0.96 0.79 0.96 0.96 0.95

1-5 (Test) 0.27 0.43 0.88 0.55 0.43 0.03 0.06 0.84 0.87 0.89 0.38 0.53 0.56 0.78 0.91

2-2 (Train) 0.38 0.53 0.93 0.94 0.73 0.01 0.18 0.94 0.95 0.96 0.97 0.76 0.95 0.97 0.96

2-2 (Test) 0.29 0.44 0.93 0.66 0.56 0.02 0.00 0.86 0.9 0.74 0.85 0.47 0.59 0.74 0.83

3-1 (Train) 0.38 0.53 0.94 0.97 0.73 0.05 0.18 0.95 0.95 0.98 0.97 0.82 0.98 0.98 0.97

3-1 (Test) 0.34 0.41 0.9 0.56 0.57 0.05 0.15 0.84 0.88 0.78 0.67 0.43 0.83 0.52 0.83

3-3 (Train) 0.37 0.53 0.95 0.98 0.85 0.04 0.18 0.95 0.95 0.98 0.97 0.83 0.99 0.99 0.98

3-3 (Test) 0.32 0.46 0.89 0.73 0.58 0.01 0.01 0.88 0.9 0.57 0.77 0.48 0.62 0.44 0.8

4-4 (Train) 0.37 0.53 0.95 0.98 0.73 0.04 0.17 0.96 0.95 0.98 0.97 0.83 0.99 1.00 0.99

4-4 (Test) 0.33 0.52 0.91 0.81 0.59 0.02 0.08 0.91 0.89 0.8 0.86 0.49 0.79 0.71 0.71

5-1 (Train) 0.37 0.54 0.95 0.97 0.72 0.03 0.18 0.95 0.95 0.98 0.97 0.83 0.99 1.00 0.98

5-1 (Test) 0.34 0.48 0.89 0.66 0.51 0.05 0.05 0.90 0.90 0.74 0.83 0.52 0.85 0.36 0.82

5-5 (Train) 0.37 0.54 0.95 0.98 0.73 0.03 0.20 0.96 0.96 0.98 0.97 0.83 1.00 1.00 0.99

5-5 (Test) 0.35 0.7 0.91 0.78 0.54 0.05 0.02 0.91 0.87 0.82 0.91 0.62 0.69 0.54 0.54
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Table 2: NSE Values for different architectures of ANN using multiple combination options

Models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1-1 (Train) 0.70 0.73 0.83 0.97 0.84 0.52 0.57 0.96 0.97 0.76 0.93 0.83 0.97 0.97 0.97

1-1 (Test) 0.68 0.99 1.00 0.94 0.82 0.56 0.55 0.96 0.96 0.96 0.95 0.74 0.96 0.96 0.96

1-3 (Train) 0.70 0.74 0.96 0.97 0.87 0.52 0.57 0.96 0.97 0.97 0.98 0.84 0.98 0.98 0.97

1-3 (Test) 0.66 0.75 0.95 0.94 0.72 0.56 0.51 0.96 0.96 0.96 0.95 0.75 0.94 0.87 0.96

1-5 (Train) 0.70 0.72 0.97 0.97 0.84 0.51 0.60 0.97 0.98 0.97 0.98 0.90 0.98 0.98 0.97

1-5 (Test) 0.66 0.74 0.95 0.76 0.73 0.54 0.55 0.92 0.93 0.95 0.63 0.77 0.73 0.89 0.96

2-2 (Train) 0.70 0.77 0.97 0.97 0.87 0.49 0.60 0.97 0.98 0.98 0.99 0.88 0.98 0.99 0.98

2-2 (Test) 0.67 0.74 0.97 0.80 0.79 0.53 0.40 0.94 0.95 0.85 0.93 0.74 0.75 0.87 0.92

3-1 (Train) 0.70 0.77 0.97 0.99 0.87 0.53 0.60 0.98 0.98 0.99 0.99 0.91 0.99 0.99 0.98

3-1 (Test) 0.69 0.72 0.96 0.73 0.8 0.56 0.60 0.93 0.95 0.89 0.83 0.70 0.89 0.73 0.91

3-3 (Train) 0.70 0.77 0.98 0.99 0.86 0.52 0.60 0.98 0.98 0.99 0.99 0.91 0.99 1.00 0.99

3-3 (Test) 0.68 0.75 0.95 0.86 0.81 0.54 0.45 0.95 0.96 0.74 0.88 0.73 1.00 0.56 0.90

4-4 (Train) 0.70 0.77 0.98 0.99 0.87 0.52 0.60 0.98 0.98 0.99 0.99 0.91 1.00 1.00 1.00

4-4 (Test) 0.69 0.78 0.96 0.90 0.81 0.55 0.57 0.96 0.95 0.89 0.94 0.75 0.89 0.83 0.85

5-1 (Train) 0.70 0.77 0.98 0.99 0.87 0.51 0.60 0.98 0.98 0.99 0.99 0.91 1.00 1.00 0.99

5-1 (Test) 0.69 0.76 0.95 0.83 0.77 0.56 0.54 0.96 0.95 0.87 0.92 0.76 0.93 0.53 0.92

5-5 (Train) 0.70 0.78 0.98 0.99 0.87 0.51 0.60 0.98 0.98 0.99 0.99 0.92 1.00 1.00 1.00

5-5 (Test) 0.70 0.77 0.96 0.88 0.79 0.56 0.42 0.96 0.94 0.91 0.96 0.82 0.82 0.67 0.72
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Table 3: RMSE Values for different architectures of ANN using multiple combination options

Models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1-1 (Train) 12077.4 11361.7 4109.6 3964.1 8781.4 14562.8 14349.6 3896.6 3717.0 3717.1 3505.1 8656.9 3648.1 3669.9 3710.1

1-1 (Test) 12737.5 12168.9 387.8 5298.9 8862.9 15609.3 15052.4 4762.4 4692.6 4675.8 5281.3 11984.7 4728.7 4666.0 4603.2

1-3 (Train) 12101.4 11161.4 3970.0 3872.1 7960.1 14566.1 14499.3 3885.6 3530.2 3577.8 3051.2 8295.4 3257.4 3242.8 3592.1

1-3 (Test) 13035.1 11561.0 5043.1 5390.3 12157.6 15612.6 15770.3 4766.3 4686.6 4649.0 5473.6 11785.1 5573.8 8592.7 4778.7

1-5 (Train) 12113.7 11505.6 3927.8 3624.0 8665.1 14769.6 13921.1 3438.9 3254.4 3393.9 3098.9 6764.4 2861.8 2872.5 3519.5

1-5 (Test) 13170.8 11864.4 5451.1 11000.7 12027.5 15856.9 15104.6 6784.4 5933.5 5250.1 14247.2 11244.8 12151.1 7625.0 4798.9

2-2 (Train) 12029.3 10379.7 3888.1 3628.5 7930.1 14968.4 13861.1 3563.5 3253.9 2834.1 2521.0 7268.5 3222.1 2390.2 3089.9

2-2 (Test) 12931.7 11720.2 4311.0 9878.7 10469.2 16133.4 17396.9 5979.4 4932.7 9126.1 6202.7 12052.9 11646.7 8332.3 6687.0

3-1 (Train) 12016.5 10378.0 3700.8 2372.0 7931.7 14479.8 13860.6 3112.1 3258.2 2276.4 2515.2 6274.0 2239.4 1926.3 2798.8

3-1 (Test) 12543.2 12160.2 4888.2 11565.7 10266.8 15621.7 14145.0 6515.0 5319.7 7883.0 9607.3 12760.3 7637.6 12093.5 6838.5

3-3 (Train) 12097.1 10376.6 3328.1 2355.5 7965.3 14536.4 13842.6 3109.0 3217.9 2265.7 2494.5 6113.1 1756.2 1418.0 2340.4

3-3 (Test) 12769.8 11457.4 5249.5 8231.6 10186.7 15832.3 16642.9 5545.9 4899.8 12210.6 8163.1 12077.7 11057.6 15483.4 7417.0

4-4 (Train) 12112.4 10331.0 3326.0 2363.9 7909.8 14592.7 13920.9 3101.6 3228.6 2256.9 2470.8 6122.8 1151.9 511.3 1220.4

4-4 (Test) 12585.4 10923.6 4845.2 6992.0 10048.3 15804.0 14707.9 4801.9 5195.1 7929.8 5868.2 11805.8 7820.7 9733.2 9077.2

5-1 (Train) 12103.1 10307.5 3329.7 2373.8 7939.8 14641.8 13897.4 3108.4 3255.3 2269.0 2512.8 6145.4 1133.5 504.5 2157.3

5-1 (Test) 12502.3 11310.0 5175.7 9298.7 11156.9 15633.0 15273.4 5014.7 5016.4 8547.2 6745.8 11378.1 6150.9 16041.3 6677.1

5-5 (Train) 12106.7 10256.0 3328.6 2352.2 7873.8 14649.8 13917.1 3092.4 3196.7 2269.9 2488.1 6064.7 771.5 261.7 1182.9

5-5 (Test) 12395.6 16986.0 4773.4 7565.3 10664.3 15654.9 17053.1 4870.3 5695.1 6950.5 4670.1 9955.2 9989.5 13525.3 12148.7
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Table 4: RBIAS Values for different architectures of ANN using multiple combination options

Models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1-1 (Train) -25.5 0 1.3 2.6 2.9 -6.6 -60.1 -0.6 -1.7 -0.4 0.8 14.3 0.1 0.5 100.2

1-1 (Test) -693.5 -950.6 -109.3 599.9 1009.4 -2435.5 546.9 40.7 382.3 102 -48 -1012.5 -167.7 111.7 277.6

1-3 (Train) -203.1 2.1 -0.1 8.9 -62.7 -3.8 -2.1 2 1 -7.3 3 2.5 -51.2 0.2 0.3

1-3 (Test) -959.4 -990.3 -171.5 737.8 -1262.8 -2452.7 -993.5 17.2 336.2 52.5 29.1 -1150.3 -364.4 -513.8 268.2

1-5 (Train) 83.9 352.7 -5.5 -1.1 1.2 21.4 377.9 -0.1 98.7 -6.7 0.8 24.1 0 1 0.2

1-5 (Test) -266.7 -637.8 -322.1 -833.9 -1342 -2723 1053.7 843.2 1149.2 161.2 -2758 -580.7 -649.6 -353.5 249.9

2-2 (Train) -163.4 227.7 -10.8 -157.8 176.2 -1213.7 -929.8 0.1 321.1 0.6 -15.9 -1.3 1 2.2 0.1

2-2 (Test) -133 -666 -117.8 1463.3 -546.7 -3831.9 1332.4 435.6 328.3 1681.9 175 -303.5 1613.7 -1285.9 1112.7

3-1 (Train) -468.5 -697.1 -1.3 29.5 457.4 48.5 689.2 8 -15 26.9 -9 16.1 -0.8 -10.1 0.5

3-1 (Test) -538.4 -1791.8 101.2 2621.7 134.2 -2428.7 465.4 748.1 30 978.5 441.5 444.3 1242.2 -118.5 44.2

3-3 (Train) 99.5 -110.8 3.4 -48.6 -69.8 71.8 1023.9 1 89.4 49.1 -3.5 144.1 0.9 1.3 -0.4

3-3 (Test) -119.3 58.9 359.1 -171.9 -1183.7 -2122.7 2781 97.6 189.2 2279.8 794.4 -431.5 600.8 1656.8 246.6

4-4 (Train) -103.1 -218.3 -14.6 67.8 679.9 41 -399.2 23.2 -51.9 79.1 16 304 -2 -0.4 0.8

4-4 (Test) -909.2 -1052.2 14 1139.4 -426.2 -2212.2 214.4 294 -361 1702.1 -612.1 -80.6 383.2 957 -939.7

5-1 (Train) -97.8 447.4 -2.3 -27.1 241.9 59.9 683.2 25.4 -148.1 58.9 -87.3 278.5 -0.8 0.1 -10.3

5-1 (Test) -546.7 188.3 -320.8 -294.2 -858.6 -2481 931.3 -69.6 182.1 690.3 192.4 13.9 -50.6 669 -496.4

5-5 (Train) -46.3 -510.2 -21.9 173.7 171.3 -104 -307.7 33.2 -85 -24.9 -25.1 -192.7 -4.2 -0.3 -0.4

5-5 (Test) -555.4 428.1 66.2 912.9 -677 -2538.3 2128.7 392 -179.1 792.6 -39.6 -421.1 137.8 59.5 900.2
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Table 5: Results of Models developed without Solar Radiation

N
o
d

e
A

rr
an

gm
en

t

Original Data (λ=1) Transformed Data (λ=0.005)

Target MSE= 0.0012976 Target MSE= 4.3006 × 10−7

MASK (All data except SR) MASK (All data except SR)

R2 NSE RMSE VARIANCE BIAS R2 NSE RMSE VARIANCE BIAS

(× 105) (× 105)

Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

5-5 90.8 92.0 95.6 95.2 674.6 691.0 4.5 4.7 92.5 -72.6 92.2 89.7 96.3 93.5 618.0 805.2 3.8 6.2 -62.0 -170.0

6-3 90.8 94.0 95.6 95.6 672.6 18.6 4.5 -0.1 41.9 -102.8 92.2 75.0 96.2 87.2 620.4 1131.4 3.8 12.8 -48.0 -43.2

4-6 90.8 93.0 95.6 95.5 668.3 671.3 4.5 4.4 -0.1 -124.9 92.4 91.8 96.3 95.0 614.1 704.4 3.7 4.7 -57.8 -144.3

3-3 90.7 90.1 95.6 94.5 675.0 742.1 4.5 5.5 57.6 -75.4 91.1 83.8 95.8 91.6 658.7 914.4 4.3 8.3 -50.6 18.2

2-2 90.8 91.4 95.6 94.6 672.6 732.2 4.5 5.3 64.6 -83.9 89.1 91.5 75.7 95.2 1578.2 691.1 25.0 4.7 1.9 -31.4

1-1 90.7 93.5 95.6 95.5 671.3 669.0 4.5 4.1 2.8 -193.0 89.1 93.6 94.7 96.0 733.0 628.7 5.3 3.8 -70.0 -77.5

6-2 90.8 82.0 95.6 90.5 673.7 979.2 4.5 9.4 81.4 -94.2 92.7 92.0 96.5 94.5 595.2 726.2 3.5 5.1 -23.2 -114.5

8-3 90.7 92.4 95.6 95.2 673.8 686.8 4.5 4.6 68.4 -99.3 91.8 89.8 96.0 94.0 635.6 778.7 4.0 5.7 -69.2 -181.6

3-8 90.8 93.1 95.6 95.8 672.1 649.7 4.5 4.2 55.0 -58.3 91.5 91.5 96.0 96.7 644.8 552.3 4.1 3.0 -53.8 -75.0
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Table 6: Results of models developed by input combinations selected through GA and Gamma Test

N
o
d

e
A

rr
an

gm
en

t

Original Data (λ=1) Transformed Data (λ=0.005)

Target MSE= 0.0012976 Target MSE= 4.3006 × 10−7

MASK 10110010111111110001 MASK 10101110100110111011

R2 NSE RMSE VARIANCE BIAS R2 NSE RMSE VARIANCE BIAS

(× 105) (× 105)

Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

5-5 97.1 70.2 98.7 85.5 372.2 1192.7 1.4 13.8 1.26 -200.7 89.5 79.1 97.7 89.4 485.6 1035.4 2.4 10.7 -28.1 -12.7

6-3 97.1 67.8 98.7 79.1 372.2 1451.2 1.4 20.9 -1.35 98.5 94.2 78.7 97.2 89 531.9 1050.7 2.8 10.9 -33.9 105.7

4-6 97 18.2 98.6 35.6 382.3 2548 1.5 63.7 0.085 -347.5 94.3 63.1 97.3 79.4 528.8 1442.1 2.8 20.8 -34.6 -18.1

3-3 95.2 63.2 97.7 79.6 483.1 1434.3 2.3 20.4 0.24 -142.1 93.2 87.9 96.7 93.5 578.8 807.7 3.3 6.5 -39.3 -85.7

2-2 88.4 64.2 94.4 80.3 758 1407.2 5.7 19.8 21.4 -45.6 91.2 90.4 95.8 94 658.6 776.7 4.3 5.8 -55.5 -144.9

1-1 91.3 73.1 95.9 87.2 651.6 651.8 4.3 3.9 -0.08 -189.5 89.5 94.1 95 96.1 719.6 630.1 5.1 3.9 -64.9 -103.8

6-2 97.1 54.8 98.7 75 372.2 1584.6 1.4 24.9 4.55 -127.5 94.7 70.6 97.5 83.6 506.5 1284.5 2.6 16.5 -29.1 44.9

8-3 97.2 69.2 98.7 84 371.8 1269.7 1.4 15.9 -3.87 -163.9 96.2 55.4 98.2 71.4 429.2 1696.2 1.8 28 -21.4 278.4

3-8 96.7 56.2 98.4 75.2 402.8 1580.8 1.6 24.9 -0.08 33.6 94.9 80.4 97.6 89.8 498.6 1008.3 2.5 10.1 -29.5 -71.7
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